Radiation image information reader

Radiant energy – Source with recording detector – Using a stimulable phosphor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S586000, C250S581000

Reexamination Certificate

active

06624437

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radiation image information reader, and more particularly to a radiation image information reader for photoelectrically reading photostimulated luminescent light emitted from a stimulable phosphor sheet.
2. Description of the Related Art
A stimulable phosphor stores part of radiation energy when exposed to radiation, and emits photostimulated luminescent light according to the stored energy when exposed to excitation light such as visible light, laser light, etc. This stimulable phosphor is stacked on a support body and utilized in a radiation image recording-reproducing system, which has extensively been put to practical use. In the radiation image recording-reproducing system, the radiation image information of a subject, such as a human body, etc., is temporarily recorded on the stimulable phosphor sheet. The stimulable phosphor sheet emits photostimulated luminescent light when scanned with excitation light such as laser light, etc. The photostimulated luminescent light is detected photoelectrically by image read means, and an image signal representing the radiation image information is obtained. After this image signal has been read, the stimulable phosphor sheet is irradiated with erasing light and emits the radiation energy remaining therein.
The image signal obtained by the aforementioned radiation image recording-reproducing system is subjected to image processing, such as a gradation process, a frequency process, etc., suitable for image observation and reading. After these processes, the processed image signal is recorded on film as a visible image for diagnosis, or displayed on a high-definition CRT display, so that it can be used for diagnosis. On the other to hand, if the aforementioned stimulable phosphor sheet is irradiated with erasing light to remove residual radiation energy, the sheet can be repeatedly used because it can store and record radiation image information again.
It is disclosed (in Japanese Unexamined Patent Publication Nos. 60(1985)-111568, 60(1985)-236354, 1(1989)-101540, etc.) that the radiation image information reader in the aforementioned radiation image recording-reproducing system employs a line light source and a line sensor in order to shorten the time needed to read photostimulated luminescent light, make the reader compact, and reduce costs. The line light source is used as an excitation light source for irradiating line excitation light to a phosphor sheet. The line sensor is used as photoelectric read means, which includes a large number of photoelectric conversion elements arrayed along the length direction of a line portion on the sheet irradiated with the excitation light by the line light source. Furthermore, the radiation image information reader is equipped with scan means for relatively moving the line light source and the line sensor with respect to the phosphor sheet in a direction substantially perpendicular to the length direction of the aforementioned light-irradiated line portion.
However, since photostimulated luminescent light spreads in all directions from a spot on the stimulable phosphor sheet irradiated with excitation light, the photostimulated luminescent light is detected not only by a photoelectric conversion element corresponding to the irradiated spot but by photoelectric conversion elements other than the corresponding photoelectric conversion element. Therefore, in the case where excitation light is irradiated to the stimulable phosphor sheet by the aforementioned line light source, and photostimulated luminescent light is detected by the line sensor, the beams of photostimulated luminescent light are mixed at the photoelectric conversion element of the line sensor and cause crosstalk. As a result, there is a problem that the sharpness of a radiation image obtained will be reduced. In this case, to avoid crosstalk, photostimulated luminescent light can be narrowed down so that it is detected only by a corresponding photoelectric conversion element. However, this causes another problem that photostimulated luminescent light cannot be efficiently collected.
SUMMARY OF THE INVENTION
The present invention has been made in view of the circumstances mentioned above. Accordingly, it is an object of the present invention to provide a radiation image information reader that is capable of shortening the time needed to read photostimulated luminescent light, as in the aforementioned radiation image information recording-reproducing system where line excitation light is irradiated onto a phosphor sheet by the line sensor. Another object of the invention is to provide a radiation image information reader which is capable of suppressing crosstalk.
To achieve the objects of the present invention mentioned above, there is provided a radiation image information reader for reading radiation image information from a stimulable phosphor sheet and obtaining an image signal which represents the radiation image information, the radiation image information reader comprising horizontal scan means and read means. The horizontal scan means is used for horizontally scanning a plurality of spot-sized excitation light beams simultaneously onto the phosphor sheet at predetermined intervals on a horizontal scanning line. The read means is used for obtaining the image signal which represents the radiation image information by photoelectrically detecting photostimulated luminescent light beams, emitted from portions of the sheet irradiated with the excitation light beams and/or from portions on a bottom surface of the sheet which correspond to the irradiated portions, by horizontal scanning of the excitation light beams.
An excitation light source that is employed in the horizontal scan means can use a light-emitting element array, a laser array, a combination of a plurality of laser light beams and deflection means for reflecting and deflecting these laser light beams, etc. The plurality of laser light beams may be emitted from a plurality of lasers, or may be obtained by emitting a single laser light beam from a single laser and then dividing the single laser light beam into a plurality of laser light beams with a beam splitter. The suitable linewidth of the excitation light beam on the sheet is 10 to 4000 &mgr;m. A suitable number of excitation light beams is from 2 to 100.
The predetermined interval is an interval such that a photostimulated luminescent light beam emitted by the irradiation of one excitation light beam onto the sheet does not mix with another photostimulated luminescent light beam emitted by another excitation light beam irradiated onto the sheet adjacent to the one excitation light beam.
In order to enhance the degree of convergence of the excitation light beam irradiated onto the sheet, it is desirable to dispose a cylindrical lens, a slit, a refractive index profile type lens array, a rod lens array, a fluorescent-light guiding sheet, optical fibers, etc., or a combination of them, between the light source and the sheet.
In the case where a light-emitting element array with a plurality of light-emitting elements disposed in a row is employed as the excitation light source, a portion joining light-emitting elements together or an electrode portion becomes a nonemission portion that emits no light. Therefore, in the case where the light-emitting element array is employed as the horizontal scan means, it is preferable to use a plurality of light-emitting element arrays. In the arrays, the nonemission portions in one light-emitting element array and the light-emitting elements in another light-emitting element array are complementarily disposed in the vertical scanning direction. Also, the light-emitting elements in the light-emitting element arrays are sequentially turned on alternately between the light-emitting element arrays so that light emitted from the light-emitting element arrays is scanned horizontally onto the phosphor sheet as a single excitation light beam.
The expression “complementarily disposed” means that one light

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation image information reader does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation image information reader, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation image information reader will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3053817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.