Radiation image information read-out method and apparatus

Radiant energy – Source with recording detector – Using a stimulable phosphor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06495851

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a radiation image information read-out method and apparatus, wherein a technique for detecting light emitted from opposite surfaces of a stimulable phosphor sheet and thereby detecting two image signals from the opposite surfaces of the stimulable phosphor sheet is employed.
2. Description of the Related Art
In various fields, such as the medical field, techniques for reading out a radiation image of an object, which has been recorded on a stimulable phosphor sheet, to obtain an image signal, performing predetermined image processing on the image signal, and thereafter displaying a visible image, which is reproduced from the processed image signal, on an image display device, such as a cathode ray tube (CRT) display device, or outputting the visible image on film with a printer, such as a laser printer (LP), have heretofore been utilized. As apparatuses for reading out the radiation image, for example, computed radiography (CR) apparatuses, in which digital image processing techniques utilizing computers are employed, have heretofore been utilized.
The CR apparatuses are radiation image recording and read-out apparatuses. With the radiation image recording and read-out apparatuses, a radiation image of an object, such as a human body, is recorded on a sheet provided with a layer of a stimulable phosphor (hereinafter referred to as a stimulable phosphor sheet). The stimulable phosphor sheet, on which the radiation image has been stored, is then exposed to stimulating rays, such as a laser beam, which cause it to emit light in proportion to the amount of energy stored thereon during its exposure to the radiation. The light emitted by the stimulable phosphor sheet, upon stimulation thereof, is photoelectrically detected and converted into an electric image signal with photoelectric read-out means, such as a photomultiplier. Recently, the CR apparatuses are widely used in practice.
As techniques for photoelectrically detecting light emitted by a stimulable phosphor sheet, the applicant proposed techniques for detecting light emitted from opposite surfaces of a stimulable phosphor sheet and thereby detecting two image signals from the opposite surfaces of the stimulable phosphor sheet in, for example, U.S. Pat. No. 4,346,295 and Japanese Unexamined Patent Publication No. 8(1996)-116435. With the proposed techniques, two photoelectric read-out means are located respectively on opposite surface sides of the stimulable phosphor sheet. Also, stimulating rays are irradiated to the two surfaces or only to one surface of the stimulable phosphor sheet, and the light, which is emitted by the stimulable phosphor sheet when it is exposed to the stimulating rays, is photoelectrically detected on the opposite surface sides of the stimulable phosphor sheet.
Specifically, with the techniques for detecting light emitted from opposite surfaces of a stimulable phosphor sheet and thereby detecting two image signals from the opposite surfaces of the stimulable phosphor sheet, a stimulable phosphor sheet is formed by overlaying a stimulable phosphor layer on a surface of a transparent substrate, and a radiation image is stored on the stimulable phosphor sheet. The stimulable phosphor sheet, on which the radiation image has been stored, is fitted on a transparent holder, and two photoelectric read-out means are located respectively above and below the holder. In this state, the light, which is emitted from one surface side of the stimulable phosphor sheet when the stimulable phosphor sheet is exposed to the stimulating rays, is detected by the photoelectric read-out means located above the holder, and an image signal (a one surface side image signal) is thereby detected. Also, the light, which is emitted from the other surface side of the stimulable phosphor sheet when the stimulable phosphor sheet is exposed to the stimulating rays, is detected by the photoelectric read-out means located below the holder, and an image signal (an other surface side image signal) is thereby detected.
Thereafter, an addition operation is performed on the image signal components of the two image signals having been detected from the opposite surfaces of the stimulable phosphor sheet (i.e., the one surface side image signal and the other surface side image signal), which image signal components represent corresponding pixels on the one surface and the other surface of the stimulable phosphor sheet, and an addition image signal (a superposition image signal) is thereby obtained. With the addition operation, high frequency noise occurring at random in each of the one surface side image signal and the other surface side image signal can be smoothed. Also, since the emitted light is collected from the two surfaces of the stimulable phosphor sheet, the light collecting efficiency can be enhanced. As a result, a superposition image, which has good image quality with an enhanced signal-to-noise ratio, can be reproduced from the addition image signal.
Also, as techniques for obtaining radiation image information by utilizing stimulable phosphor sheets, or the like, subtraction processing (subtraction operation) techniques have heretofore been known. With the subtraction processing techniques, a plurality of radiation images are recorded under different conditions and are then read out to obtain a plurality of image signals. Thereafter, a subtraction operation is performed on the plurality of the image signals, and a subtraction image signal is thereby obtained. In this manner, a subtraction image corresponding to the difference between the plurality of the radiation images, i.e. a subtraction image in which only a pattern of a specific object part (hereinbelow referred to also as a pattern of a tissue, a structure, or the like) in the radiation images has been enhanced or extracted, is obtained. Basically, the subtraction processing techniques may be classified into a temporal (time difference) subtraction processing technique and an energy subtraction processing technique. The applicant proposed various energy subtraction processing techniques utilizing stimulable phosphor sheets in, for example, U.S. Pat. Nos. 4,855,598 and 4,896,037.
Also, in order for a signal-to-noise ratio to be enhanced over the entire frequency band of an image obtained from the addition operation or the subtraction processing, the applicant proposed a technique for performing masking processing on the image signal obtained from each of the opposite surfaces of a stimulable phosphor sheet, such that a parameter (a weight factor) appropriate for each of the opposite surfaces and each of frequency bands can be utilized, as disclosed in, for example, Japanese Unexamined Patent Publication No. 7(1995)-319092.
Stimulable phosphor sheets have various different specifications. For example, stimulable phosphor sheets may have different sensitivities and may be classified into stimulable phosphor sheets having a standard sensitivity and stimulable phosphor sheets having a high sensitivity. If the sensitivity of the stimulable phosphor sheet varies, a width of the image signal corresponding to a desired read-out range (which width is referred to as the read-out gain), and/or a center value of the image signal corresponding to the center point of a desired read-out range (which center value is referred to as the read-out sensitivity), or a frequency response of the obtained image signal will vary. Also, besides the sensitivity, the particle size of the stimulable phosphor, the stimulable phosphor layer constitution, and the like, may vary for different generations of the stimulable phosphor sheets and, as a result, the frequency response of the obtained image signal varies.
Therefore, in cases where the specifications of the stimulable phosphor sheet vary, if the read-out sensitivity and/or the read-out gain or the parameters for the operation processing, such as the addition operation or the subtraction operation, are kept at predetermined values, an appropriate image cannot always be ob

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation image information read-out method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation image information read-out method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation image information read-out method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932664

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.