Radiation image information read-out apparatus

Radiant energy – Source with recording detector – Using a stimulable phosphor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S584000

Reexamination Certificate

active

06787791

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a radiation image read-out apparatus, and more particularly to a radiation image read-out apparatus for reading out a radiation image stored on a stimulable phosphor sheet by the use of a line sensor.
2. Description of the Related Art
When certain kinds of phosphor are exposed to a radiation, they store a part of energy of the radiation. Then when the phosphor which has been exposed to the radiation is exposed to stimulating rays such as visible light or a laser beam, light is emitted from the phosphor in proportion to the stored energy of the radiation. A phosphor exhibiting such properties is generally referred to as “a stimulable phosphor”. In this specification, the light emitted from the stimulable phosphor upon stimulation thereof will be referred to as “stimulated emission”. There has been put into wide use a radiation image recording and reproducing system as a computed radiography in which a stimulable phosphor sheet (a sheet comprising a support sheet and a layer of the stimulable phosphor formed thereon) is exposed to a radiation passing through an object such as a human body to have a radiation image of the object stored on the stimulable phosphor sheet, a stimulating light beam such as a laser beam is projected onto the stimulable phosphor sheet, the stimulated emission emitted from the stimulable phosphor sheet upon excitation by the stimulating light is photoelectrically detected, thereby obtaining an image signal, and then the stimulable phosphor sheet is exposed to erasing light after the image signal is obtained from the stimulable phosphor sheet so that the residual energy of the radiation is fully released from the stimulable phosphor sheet.
It has been proposed to allot the radiation absorbing function and the energy storing function of the stimulable phosphor conventionally employed in the radiation image recording and reproducing system between two kinds of phosphor, one being excellent in the radiation absorbing function and the other being quick in response in emitting the stimulated emission upon excitation by the stimulating light. With this arrangement, the radiation absorbing efficiency can be improved and at the same time, the energy storing efficiency can be increased. There also has been proposed a system in which a phosphor excellent in radiation absorbing power is caused to absorb the radiation, another phosphor quick in response in emitting the stimulated emission upon excitation by the stimulating light is caused to absorb light emitted from the phosphor excellent in radiation absorbing power upon excitation by light in ultraviolet to visible region and to store energy, then said another phosphor is excited by light in visible to infrared region to emit stimulated emission, and the stimulated emission is photoelectrically read by a photoelectric read-out means to obtain an image signal. (See, Japanese Patent Application No. 11(1999)-372978.)
The radiation image signal obtained in the systems described above is subjected to image processing such as gradation processing and/or frequency processing and a radiation image of the object is reproduced as a visible image for diagnosis on the basis of the processed radiation image signal on a recording medium such as a photographic film or a display such as a high-resolution CRT. When the stimulable phosphor sheet is exposed to erasing light, the residual energy of the radiation is fully released from the stimulable phosphor sheet and the stimulable phosphor sheet comes to be able to store a radiation image again, whereby the stimulable phosphor sheet can be repeatedly used.
In the radiation image information read-out apparatus employed in the radiation image recording and reproducing apparatus, it has been proposed to use a line light source which projects a line beam onto the stimulable phosphor sheet as a stimulating light source and to use a line sensor having an array of photoelectric convertor elements extending in the main scanning direction (the longitudinal direction of the line beam) as a means for photoelectrically reading out the stimulated emission. The line beam and the line sensor are moved relative to the stimulable phosphor sheet in a sub-scanning direction (the direction substantially perpendicular to the longitudinal direction of the line beam) by a scanning means. By the use of a line beam and a line sensor, the reading time is shortened, the overall size of the apparatus can be reduced and the cost can be reduced. See, for instance, Japanese Unexamined Patent Publication Nos. 60(1985) -111568, 60(1985)-236354, and 1(1989)-101540. In such a radiation image information read-out apparatus, the line sensor is positioned close to the stimulable phosphor sheet and a condenser lens is provided between the line sensor and the stimulable phosphor sheet in order to collect the stimulated emission on the light receiving face of the line sensor.
In the radiation image information read-out apparatus, there has been a problem that a part of the stimulating light projected onto the surface of the stimulable phosphor sheet is reflected by the surface of the stimulable phosphor sheet to impinge upon the line sensor and deteriorates the image in contrast.
In order to overcome this problem, it has been proposed to insert a color glass filter suitable for cutting the stimulating light between the stimulable phosphor sheet and the line sensor. However since the line sensor is positioned close to the stimulable phosphor sheet, and at the same time the condenser lens is provided between the line sensor and the stimulable phosphor sheet as described above, the thickness of the color filter to be inserted between the stimulable phosphor sheet and the line sensor is limited. Accordingly, the stimulating light cannot be satisfactorily cut and the contrast of the image cannot be satisfactorily increased.
SUMMARY OF THE INVENTION
In view of the foregoing observations and description, the primary object of the present invention is to provide a radiation image information read-out apparatus in which the stimulating light can be satisfactorily separated from the stimulated emission not to impinge upon the line sensor.
In one aspect of the present invention, there is provided a radiation image read-out apparatus comprising a stimulating light beam projecting means which projects a line stimulating light beam onto a stimulable phosphor sheet, storing thereon radiation image information, to extend in a main scanning direction, a line sensor consisting of a plurality of photoelectric convertor elements which receive stimulated emission emitted from the portion exposed to the line stimulating beam to convert the amount of stimulated emission to an electric signal and are arranged in a row which extends along the line portion of the stimulable phosphor sheet exposed to the line stimulating beam, a condenser lens which is disposed along the line sensor to collect the stimulated emission on the light receiving face of the line sensor and a sub-scanning means which moves one of the line sensor and the stimulable phosphor sheet relatively to each other in a sub-scanning direction intersecting the main scanning direction, wherein the improvement comprises that
said condenser lens has a chromatic aberration of magnification in the sub-scanning direction such that most of the light in the wavelength range of the stimulated emission is collected on the light receiving face of the line sensor and most of the light in the wavelength range of the stimulating light is collected outside the light receiving face of the line sensor.
Generally the wavelength of the stimulating light is longer than that of the stimulated emission. The present invention is characterized in that the stimulating light and the stimulated emission are separated from each other on the basis of the chromatic aberration of magnification generated by the wavelength difference therebetween.
The expression “most of the light in the wavelength range of the stimulated emission is col

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation image information read-out apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation image information read-out apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation image information read-out apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200920

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.