X-ray or gamma ray systems or devices – Source support – Shielding
Reexamination Certificate
2000-03-17
2001-12-04
Dunn, Drew (Department: 2876)
X-ray or gamma ray systems or devices
Source support
Shielding
C250S515100, C250S517100, C250S519100, C128S846000
Reexamination Certificate
active
06325538
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable
REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates, in general, to radiation shields, and, in particular, to an improved radiation shield for the protection of medical personnel and patients during x-ray guided medical procedures. Some commercially available shields include leaded aprons or drapes placed over a portion of the patient's body that is to be protected.
The present invention relates specifically to the field of cardiac catheterization and intervention. Currently, ceiling mounted movable lead glass shields are used to protect the chest of the physician. In addition, each member of the catheterization team is obliged to wear protective lead vests, skirts, or coats. These protective measures are inadequate for several reasons:
1. Protective lead aprons and coats are heavy and very uncomfortable. Over hours, they lead to operator fatigue and back pain. Over years, they may lead to chronic degenerative back problems.
2. Protective aprons, coats, and mobile ceiling mounted shields offer incomplete protection. The operators head, hands, arms, and lower legs are freely exposed to radiation. Especially problematic is the lack of protection of the long bones of the arms and legs, since radiation exposure of hematopoetic stem cells in the bone marrow may lead to the development of leukemia.
3. The patient, while only temporarily exposed, is completely lacking protection. Especially radiation sensitive areas, exposed with traditional radiation equipment, are thyroid gland, eyes, the long bones of arms and legs, and gonadal tissues.
2. General Background of the Invention
Scatter radiation is that radiation that is deflected away from a selected x-ray field by media it encounters. This scatter radiation poses health hazards, most notably the risk of cancer, leukemia, and cataract formation in the eye. Patients, while directly exposed to the X-ray beam, are currently felt to be only at moderate risk because the time of exposure is limited. On the other hand, physicians and allied health personnel assisting in the catheterization laboratory are repeatedly exposed to cumulative scatter radiation in doses inverse to the distance from the source.
Currently, ceiling mounted movable lead glass shields are used to protect the chest of the physician. In addition, each member of the catheterization team is obliged to wear protective lead vests, skirts, or coats. These protective measures are inadequate for several reasons: Protective lead aprons and coats are heavy and very uncomfortable. Over hours, they lead to operator fatigue and back pain. Over years, they may lead to chronic degenerative back problems. Protective aprons, coats, and mobile ceiling mounted shields offer incomplete protection. The operators head, hands, arms, and lower legs are freely exposed to radiation. Especially problematic is the lack of protection of the long bones of the arms and legs, since radiation exposure of hematopoetic stem cells in the bone marrow may lead to the development of leukemia. The patient, while only temporarily exposed, is completely lacking protection. Especially radiation sensitive areas, exposed with traditional radiation equipment, are thyroid gland, eyes, the long bones of arms and legs, and gonadal tissues.
A new type of radiation shield is proposed by the present invention. This shield would almost completely isolate the trajectory between a radiation generator and a camera. Radiation scatter would be almost absent, allowing for the complete elimination of the personal radiation protection of the operators. Radiation to the eyes, thyroid gland, long bones of the legs and arms, and the gonads of the patient would be greatly reduced. This device could serve not only for cardiac catheterization, but for a variety of radiological procedures.
In the prior art, various shields devices for use with X-rays have been proposed. For example, U.S. Pat. No. 2,526,390 to Moran et al. discloses an X-ray apparatus for industrial use which is automatically energized only when the operator is shielded from stray X-rays.
An early patent that is directed to an x-ray shield is the Shasky U.S. Pat. No. 2,794,128 entitled “X-Ray Shield”. In the Shasky patent, the x-ray machine has a mounting plate with a plurality of clips attached thereto at one edge thereof. A shield of flexible opaque radiant material is affixed to the clips.
The Winkler U.S. Pat. No. 3,967,129 discloses a radiation shield in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist.
U.S. Pat. No. 3,984,696 issued to Collica discloses a radiation guard suitable for use in conjunction with a diagnostic table and penetrable by the hands of an operator to facilitate moving or examining a patient positioned on a table. In accordance with the invention there is provided a supportive mountable at about an edge of the table so as to extend vertically from about the edge, the frame comprising at least a pair of spaced bars. A plurality of strips of flexible radiation shielding material are mounted across the bars in closely spaced relationship, the strips being mounted sufficiently close together to prevent substantial radiation leakage through the frame. The hands of an operator can be inserted between the adjacent strips to manually reposition or examine a patient while protecting most of the operator's body from substantial radiation.
U.S. Pat. No. 4,062,518 issued to Stivender discloses a diagnostic x-ray table having a first group of x-ray shielding panels that are supported for rotation on a carrier and another group of panels that are supported on a lever that is pivotally connected to the carrier. The lever may be aligned with the carrier to present the combined width of all panels across the front of a combination spot film and fluoroscopic device. Means responsive to pivoting the lever along the side of the apparatus rotate the first group of panels to substantial parallelism with the second group to present the panels along the side of the apparatus when the spot film and fluoroscope device is angulated to put the patient being examined in an erect posture.
U.S. Pat. No. 3,737,661 to Applegate discloses a shielded X-ray device for a portable X-ray apparatus comprising a collimator and a rotatably and pivotally mounted container which encloses a portion of an object to be X-rayed.
U.S. Pat. No. 4,157,476 to O'Connor discloses a dental X-ray apparatus in which the X-ray tube is mounted in a casing which shields against stray radiation being projected through the housing of the tube head.
U.S. Pat. No. 4,286,169 to Rossem discloses a shield for radio-isotope producing generators which includes a movable portion which can be moved with respect to a stationary portion. When in the open position, the generator can be inserted into the device, and when in the closed position, the generator is shielded.
A radiation shield is disclosed in the Lenhart U.S. Pat. No. 4,581,538. The '538 patent discloses a shield for protecting a person from radiation being used to irradiate a work area, while permitting the person to observe and to have access to the work area, including a radiation-shielding observation window, and a flexible, mechanically penetrable radiation-shielding curtain adjacent the window. Another Lenhart U.S. Pat. No. 5,006,718 discloses an x-ray shield that comprises an elongated mounting bar having a linear main section and linear hinge section hingedly connected together, a mounting bracket on one side of the linear main section adapted for connection to the accessory rod on the side of an x-ray examination table and
Dunn Drew
Garvey, Smith, Nehrbass & Doody, L.L.C.
LandOfFree
Radiation field isolator apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radiation field isolator apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation field isolator apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2574084