Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive
Reexamination Certificate
2002-06-25
2003-09-09
Sugarman, Scott J. (Department: 2873)
Radiant energy
Invisible radiant energy responsive electric signalling
Infrared responsive
C250S338100
Reexamination Certificate
active
06617581
ABSTRACT:
BACKGROUND OF THE INVENTION
Quality control of a product or process has become a large part of the economics of industry. A major concern of quality control is accuracy in measuring and the ability to detect the slightest fault in a variety of products and processes. Various devices are used to measure differences in weight, temperature and other dimensions. Such devices are usually nonportable, time consuming, inaccurate, invariable for use in detecting more than one object, and often incapable of giving a quantitative analysis.
Radiation detectors can be used to detect abnormalities by measuring temperature change and heat loss or gain. Radiation detectors have been used as a non-contact alternative to many temperature sensors. Infrared scanning devices have also been used to detect temperature differences between a subject and a reference as well as to measure heat loss from machinery, plumbing, electrical lines and the like. Typically such radiation detectors and infrared scanning devices employ radiation sensors which respond to changes in radiation in the order of {fraction (1/10)} second. Such sensors are not only fast, but accurate and economic as operations of interest do not need to be shut down during detection.
Radiation detectors are based on the principle that the thermal radiation emitted from a subject is proportional to the temperature of the subject raised to the fourth power. The radiation emitted is also a function of the emissivity of the subject and of background radiation, but can be calibrated out for applications in which the target has consistent properties.
One type of radiation sensor is a thermopile. Thermopiles in general have been used to provide an indication of target temperature. A thermopile operates on the principle that sensed radiation causes a voltage to be produced at the thermopile output which is indicative of the difference between the hot and cold junctions of the thermopile.
One typical problem with radiation sensors such as thermopiles is their tendency to become overheated by energy trapped within the device. Such overheating and retaining of energy by the radiation sensor causes inaccuracies in the temperature readings. Many sensing applications require close range detection. A user in such a situation often runs the risk of heating or cooling the device with changing environmental conditions, which may change the cold junction temperature of the device or perhaps even distort the sensor output by causing uncontrolled thermal gradients. In addition to heat management problems, radiation sensor devices face dirty as well as harsh environments. Elaborate cooling, purging and cleaning systems have been used, but are expensive, clumsy and require maintaining close calibration.
SUMMARY OF THE INVENTION
Provided with the present invention is a radiation detector having a thermopile sensing radiation emitted from a target, and providing an output signal indicative of the temperature of the target. To allow calibration of the thermopile output signal, a calibrator such as a potentiometer or other variable resistance is provided at the thermopile output. By enabling a user to adjust the potentiometer, the thermopile output signal may be user scaled to calibrate the output signal to intersect a thermocouple output response at a desired target temperature.
Although the thermopile and potentiometer together form a detector which can be adjusted to suit a particular application, a preferred embodiment also has a thermocouple which provides an output signal that combines with the output signal of the thermopile to produce a total output signal. To provide compensation for output changes due to changes in local temperature, the change in the thermopile output signal with a change in the local temperature is inversely related to the change in the thermocouple output signal with a change in the local temperature.
By connecting the thermocouple electrically in series with the thermopile, the output voltages of the thermopile and the thermocouple combine to provide a total output voltage. The hot junction of the thermocouple is held at the cold junction temperature of the thermopile. Thus, with the thermopile thermal response to the common junction local temperature being close to the inverse of the thermocouple thermal response to the local temperature, changes in the total output signal are substantially independent of fluctuation of the temperature at which the thermocouple hot junction and the thermopile cold junction are held.
In one embodiment, a lens is provided for filtering out shorter wavelengths from the radiation sensed by the thermopile. This helps improve the linearity of the thermopile thermal response in a target temperature range of interest. With the total output response of the sensor approximating a linear function in a temperature range of interest, a linear output means such as a meter responsive to linear inputs may be controlled directly from the total output signal.
In another embodiment, the filter passes shorter wavelengths, substantially filtering out longer wavelengths such as those greater than 6 microns. Although such a sensor loses linearity, it is significantly less sensitive to changes in emissivity with change in temperature over a narrow target temperature range. Accordingly, such a device is particularly suited to low emissivity targets.
The cold junction temperature to which the hot junction temperature of the thermopile is referenced is at the local hot junction temperature of the thermocouple which is referenced to the thermocouple cold junction. The thermocouple cold junction reference temperature may be located remote from its hot junction and the thermopile sensor. This prevents changes in output of the sensor due to incidental heating of the local reference temperature due to its proximity to the target.
One embodiment of the present invention provides for a differential radiation detector. In that embodiment, a first thermopile senses radiation from a first target and provides an output signal indicative of the temperature of the first target. A first thermocouple provides an output signal which combines with the output signal of the first thermopile to produce a first total output signal. A change in the output signal of the first thermopile with changes in a first local temperature is inversely related to a change in the output signal of the first thermocouple with changes in the first local temperature.
In addition to the first thermopile/thermocouple combination, a second thermopile senses radiation from a second target and provides an output signal indicative of the temperature of the second target. A second thermocouple provides an output signal which combines with the output signal of the second thermopile to produce a second total output signal. A change in the output signal of the second thermopile with changes in a second local temperature is inversely related to the change in the output signal of the second thermocouple to changes in the second local temperature. The cold junction of the first thermocouple and second thermocouple are held to a common temperature and the thermocouple/thermopile pairs are coupled to provide a differential output. Calibrators and lenses may also be provided in the same manner as with the single thermopile sensor embodiment. It is preferable that the thermopiles are matched and the thermocouples are matched to provide an accurate differential response.
In accordance with another embodiment of this invention, a radiation detector has a temperature dependent variable resistor coupled to the thermopile and providing a variable resistance that combines with the thermopile output voltage to produce a linearized thermopile output voltage. As such, the thermopile output, linearized by the thermistor, combines with the linear thermocouple output to provide a detector output that is more stable with changes in the thermopile cold junction temperature.
In the aforementioned embodiments, the thermopile and the thermocouple together form a detector suitable for applications
Exergen Corporation
Hamilton Brook Smith & Reynolds P.C.
Hanig Richard
Sugarman Scott J.
LandOfFree
Radiation detector with remote temperature reference does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radiation detector with remote temperature reference, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation detector with remote temperature reference will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3019507