Radiation detection apparatus

Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S363100, C600S436000

Reexamination Certificate

active

06242741

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radiation detection apparatus. More particularly, the present invention relates to an apparatus for detecting, quantizing and mapping radiation emitted from a scintillation fluid having gamma-emitting isotopes. The apparatus is battery operated and has a hand-held probe for detecting radiation, and for transmitting electrical signals that represent the detected radiation to a remote unit to process the signals into information. The hand-held probe is a scintillation detector that has a switch assembly removably mounted on the probe for initiating remotely electrical signals to a control unit.
The switch assembly has preferably two finger-operated triggers. One trigger initiates the count, and the other trigger directs the remote unit to download, and preferably record, the counted scintillations or averaged scintillation values for further use.
2. Description of the Prior Art
Procedures for detecting, quantizing and localizing or mapping carcinomas in living beings are known. A radiation-emitting substance is passed through a patient's body. Either a radiation detector device is secured to the patient's body, or a hand-held probe is held adjacent a series of sites surrounding a suspected tumor. One procedure involves injecting a scintillation fluid containing, for example, technetium
99
, in quadrants of the capillary system located about a site to determine whether cancer has spread to the lymphatic system. Since fluid drains from the injected area through the lymphatic system, the scintillation detector allows identification and location of the sentinel node, the first lymph node draining the most scintillation fluid and emitting the highest number of scintillations in the lymphatic drainage path from the tumor.
Heretofore, each radiation detecting, quantizing and mapping apparatus has been connected by hardwire to an electrical receptacle or has a battery that discharges during use. One conventional apparatus has a foot pedal connected to a remote unit to initiate counts. The foot pedal does not activate a downloading of counts, let alone during a preset time period. A second conventional apparatus has a built-in rechargeable battery. This is disadvantageous since an extended time, usually four to six hours, is required to recharge the battery. Since recharging cannot occur during operation of the apparatus, should the battery require recharging during a procedure, the procedure must be stopped.
In addition, the apparatus has a hand-held probe and a remotely located control unit. The probe was merely used for detecting emitted radiation from the patient's body and transmitting electric signals representing the detected radiation to the control unit for processing. The control unit has the controls for controlling various functions including taking counts, setting the time period for taking timed counts, and initiating the taking of counts. These controls had to be activated solely at the control unit. This is disadvantageous because to conduct the counting procedure, the operator must hold and use the hand-held radiation detection probe with one hand. With the other hand, the operator needed to reach the control unit and manipulate the controls. It is difficult to conduct both the detection and control manipulation simultaneously. Also, to do so results in difficulties in taking counts and, perhaps, inaccuracies in the counts. For example, while taking a scintillation count, the probe must be precisely positioned over a selected site for a set period of time. It is difficult to maintain that precise position while reaching to depress a count start button on the control unit. Movement of the probe during counting can create an inaccurate count. Since counting is repeated at different probe angle positions over the same site and over different body sites, the difficulties and inaccuracies can be compounded. Therefore, it is desired to have an improved radiation detection apparatus that obviates or reduces such difficulties, inaccuracies and inefficiencies.
It is known to employ switches removably mounted on a handpiece. U.S. Pat. No. 5,304,763 discloses two or more finger-operated switches removably mounted to a hand-held electrosurgical device. The switches control the application, e.g., initiation and termination, of electrical energy provided to the device. For example, one switch controls the application of energy to energize an electrode of the device for cutting body tissue. The other switch energizes a suction portion of the device to remove cut tissue from the body.
Heretofore, hand-held radiation detection probes and their cables have had to be sterilized to be re-usable because they become contaminated during use. Sterilizing such hand-held detection devices prior to each use is expensive, time consuming and may require maintaining a larger than necessary inventory of the probes and cables. It is desired to have an apparatus that obviates the need for sterilizing hand-held devices or probes prior to their re-use. It would also be desired to have an apparatus that allows for the use of hand-operated switches mounted on the hand-held device or probe during use, but permits removal from it during sterilization of the device or probe.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved radiation detection apparatus that includes a hand-held radiation detection probe with at least one switch removably mounted thereon.
It is another object of the present invention to provide such a radiation detection apparatus in which the one switch has a first trigger or button that remotely enables a counter in a control unit to accumulate electrical signals representing radiation scintillation detected over a set time period, and a second button that remotely directs the control unit to ouput data regarding the counted scintillations.
It is still another object of the present invention to provide such a radiation detection apparatus that allows the operator to operate a hand-held probe, while simultaneously using the switches mounted on the probe to control a remote control unit.
It is yet another object of the present invention to provide such a radiation detection apparatus in which the control unit is battery operated to provide total mobility of the control unit.
It is a further object of the present invention to provide such a radiation detection apparatus that has a removable, rechargeable battery as its power source.
It is still a further object of the present invention to provide such an improved radiation detection apparatus that enables a hand-held radiation detection probe to be reused without prior sterilization.
It is yet a further object of the present invention to provide such a hand-held radiation detection probe with a cover to protect the probe from contamination during use, and to isolate electrically the switch from the hand-held probe.
It is still yet a further object of the present invention to provide such an improved radiation detection apparatus that is removably mounted on a movable stand.
These and other objects of the present invention are achieved by a radiation detection apparatus comprising: means for counting a scintillation count value; means for outputting a scintillation count value to a utilization device; a hand-held probe including a scintillation detector; means for connecting the probe to the count means; first means removably positioned on the probe for, in a first state, causing the count means to accumulate a scintillation count over a first period, and in a second state, causing the count means to accumulate a scintillation count over a second period, the second period being longer than the first period; and second means removably positioned on the probe for causing, upon activation, the output means to manifest an accumulated scintillation count from the count means.
The radiation detection apparatus can include means for displaying a count value of the count means. The display means responds to act

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation detection apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation detection apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation detection apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2440505

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.