Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...
Reexamination Certificate
2001-07-24
2003-07-29
Seidleck, James J. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Compositions to be polymerized by wave energy wherein said...
C522S096000, C522S018000, C522S064000, C522S049000, C522S050000, C522S038000, C522S120000, C522S121000, C522S151000, C522S152000, C522S173000, C522S174000, C424S061000, C424S401000, C252S182130, C252S182180, C252S182220, C252S182290
Reexamination Certificate
active
06599958
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention (Technical Field)
The present invention relates to visible and ultraviolet (“uv”) radiation curable nail (e.g. fingernail and toe nail) coatings, compounds used to enhance the bonding between the radiation curable coatings and natural nail and finishing compounds used to clean the surface of the radiation curable coatings. The present invention also relates to the methods of applying radiation curable nail coatings, bond-enhancing compounds, and finishing compounds to artificial nail-tips and natural nails.
2. Background Art
Light curable nail coatings are disclosed in Billings, U.S. Pat. No. 5,194,292, entitled “Method of Drying and Bonding Nail Polish;” Cornell, U.S. Pat. No. 4,704,303, entitled “Nail Extension Composition;” and Guiliano, U.S. Pat. No. 4,682,612, entitled “Novel Process and Article for Preparing Artificial Nails.” The '292 patent describes a method of protecting common nail polish by applying a light-curable clear coating over the polished nail. The '303 patent describes a coating composition based on an aliphatic or cycloaliphatic hydrocarbon urethane diacrylate or methacrylate having a molecular weight of 250 to 500 and a viscosity of 5,000 to 30,000 cps. Radiation in the visible region is used to cure the '303 patent coatings. The '612 patent describes an organic solvent-free photocurable composition which has at least one liquid monomer in which an acrylated urethane oligomer is dissolved and crosslinked upon cure. Radiation in the uv region is used to cure the '612 patent coatings. None of these patents disclose the use of Bisphenol A Diglycidyl Methacrylate (“BISGMA”) based urethane resin.
Problems associated with the prior light curable nail coatings include the tendency of the coatings to run on the nail during application due to low resin viscosities. Consequently, the prior art coatings tend to run onto the cuticle or other unwanted areas and cause lifting of the coating with time. In contrast, the present invention comprises a creamy consistency with a viscosity of between approximately 20,000-80,000 cps. The higher viscosity of the mixtures of the present invention allows the mixtures to be brushed onto the nail or nail tip without significant displacement during the application process, thus reducing the chance of lifting.
Another problem with the prior light curable nail coatings is the use of urethane resins made with high levels of toxic catalysts, which pose a great risk of skin sensitization. In contrast, the urethane resins used in the present invention require relatively low levels of catalyst, and thus do not generally cause skin sensitization in the general population.
Another problem with the prior light curable nail coatings is that over time the coatings tend to lift from the natural nail. The present invention overcomes this problem through the optional application of pre-bond compounds which enhance the bond between the natural nail and the coatings of the present invention as well as the prior light curable nail coatings.
Another problem with the prior light curable nail coatings is that upon curing the surface of the coating becomes sticky and rough due to air inhibition. Generally, ethyl alcohol is then applied to the coating surface to remove the undesirable air inhibited layer. The present invention includes various compounds that improve the final appearance and characteristics of the coated nail.
SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)
The present invention is of a composition that is applied to natural nails and artificial nail tips. The composition comprises a polymeric compound, a photoinitiator, and a photoaccelerator. In one embodiment the composition comprises: between approximately 30 and 98 percent by weight, preferably between approximately 60 to 95 percent by weight, of polymeric compound; between approximately 0.05 and 10 percent by weight, preferably between approximately 0.1 and 5 percent by weight, of photoinitiator; and between approximately 0.1 and 5 percent by weight, preferably between approximately 0.25 and 1 percent by weight, of photoaccelerator. In the preferred embodiment, the polymeric compound or compounds comprise acrylates and/or methacrylates, the photoinitiator comprises phosphinates and phosphine oxides, and the photoaccelerator comprises aliphatic amines and aromatic amines, preferably ethyl 4-dimethylaminobenzoate, butoxyethyl dimethylaminobenzoate, octyl-para-dimethylaminobenzoate, and/or ethyl dimethylaminoethyl methacrylate.
In another embodiment the composition may optionally comprise a coupling agent. The composition comprising between approximately 0.01 and 0.5 percent by weight, preferably between approximately 0.05 and 0.15 percent by weight, of coupling agent. In the preferred embodiment, the coupling agent utilized comprises an organo-metallic, preferably an organo-titanate coupling agent such as isopropyldimethylacrylisiostearoyl titanate, tetraisopropyldi(dioctyl)phosphito titanate, neopentyl(diallyl)oxy,tri(dodecyl)benzene-sulfonyl titanate, and neopentyl(diallyl)oxy,trineodecanonyl titanate.
In another embodiment the composition may optionally comprise at least one additive such as a plasticizers, secondary photoinitiators, colorants, dyes, inhibitors, fillers, fibers, and/or adhesion promoting polymers. The composition comprising between approximately 0 and 50 percent by weight, preferably between approximately 1 and 20 percent by weight, of additive. The composition may optionally comprise: a plasticizer such as phthalates, adipates, and/or sulfonamides; a secondary photoinitiator such as camphorquinone, benzil dimethylketal, and/or benzophenone; a colorant such as barium, calcium, aluminum lakes, iron oxides, talcs, carmine, titanium dioxide, chromium hydroxides, ferric ferrocyanide, ultramarines, titanium dioxide coated mica platelets, and/or bismuth oxychlorides; an inhibitor such as hydroquinone, methyl ether hydroquinone, and/or butylated hydroxy toluene; a filler such as mineral fillers and/or polymeric fillers; and an adhesion promoting polymer such as methacryoyloxy ethyl phthalate.
In another embodiment the composition comprises a BISGMA urethane, a polyether, methacrylated urethane, a photoinitiator, and a photoaccelerator. In one embodiment, the composition comprises: between approximately 30 and 90 percent by weight, preferably between approximately 50 to 70 percent by weight, of BISGMA urethane; between approximately 0.5 to 50 percent by weight, preferably between approximately 10 to 40 percent by weight, of methacrylated urethane; between approximately 0.05 to 10 percent by weight, between approximately 0.5 to 5 percent by weight, of photoinitiator; and between approximately 0.1 and 5 percent by weight, preferably between approximately 0.25 and 1 percent by weight, of photoaccelerator. In the preferred embodiment, the composition comprises: a mathacrylated urethane having a viscosity greater than 100,000 cps; a photoinitiator such as camphorquinone, ethyl 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzildimethyl ketal, and/or benzophenone; and a photoaccelerator such as aliphatic amines and aromatic amines, preferably ethyl 4-dimethylaminobenzoate, butoxyethyl dimethylaminobenzoate, octyl-para-dimethylaminobenzoate, and ethyl dimethylaminoethyl methacrylate.
In another embodiment the composition may optionally comprise a coupling agent. The composition comprising between approximately 0.01 and 0.5 percent by weight, preferably between approximately 0.05 and 0.15 percent by weight, of coupling agent. In the preferred embodiment, the coupling agent utilized comprises an organo-metallic, preferably an organo-titanate coupling agent such as isopropyldimethylacrylisiostearoyl titanate, tetraisopropyldi(dioctyl)phosphito titanate, neopentyl(diallyl)oxy,tri(dodecyl)benzene-sulfonyl titanate, and neopentyl(diallyl)oxy,trineodecanonyl titanate.
In another embodiment the composition may optionally comprise at least one additive such as a plasticizers, secondary photoinitiators
Gel Products, Inc.
McClendon Sanza L
Peacock Deborah A.
Peacock Myers & Adams PC
Seidleck James J.
LandOfFree
Radiation curable nail coatings does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radiation curable nail coatings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation curable nail coatings will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015792