Radiation curable coating containing polyfuorooxetane

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S075000, C528S076000, C560S026000, C560S033000, C560S115000, C560S158000, C560S166000, C560S167000, C525S455000, C525S460000, C525S123000, C525S127000, C525S129000, C526S292900, C526S294000, C526S295000, C526S296000, C526S301000

Reexamination Certificate

active

06673889

ABSTRACT:

FIELD OF INVENTION
Radiation curable coatings are typically formulated using unsaturated monomers and oligomers or polymers with unsaturated or reactive groups such as oxiranes therein that can be polymerized upon exposure to electron beams or exposure to ultraviolet radiation when photoinitiators are present. Polyfluorooxetane refers to oligomers and polymers that contain fluorine containing groups pendant from the oxetane backbone. The fluorine containing groups contribute low surface tension to the coating and some stain release properties.
BACKGROUND OF THE INVENTION
Traditionally radiation curable coatings utilized combinations of silicone oils, wetting agents and polyethylene waxes to provide smoothness, abrasion resistance, low friction and scratch resistance. However these materials can be largely fugitive (unreacted) in nature and thus migratory, leading to handling problems, lower durability and can work at cross-purposes leading to decreases in other coating properties such as gloss.
U.S. Pat. No. 5,411,996 disclosed the use of fluoroalcohol in U.V. epoxy-silicone coating formulations. The fluorinated alcohols were used to solubilize the U.V. initiator (sulfonium salt) to allow the polymerization reaction to occur.
U.S. Pat. No. 5,081,165 related to an anti-fouling coating composition comprising a photopolymerization initiator or thermal polymerization initiator and fluorine containing (meth)acrylate.
U.S. Pat. No. 4,833,207 relates to a curable composition for forming a cladding for an optical fiber having a refractive index of about 1.43 to 1.60.
U.S. Pat. No. 5,674,951 discloses isocyanate functionalized polyoxetane polymers with pendant fluorinated side chains that can optionally be chain extended with polyoxetanes or other polyethers, have the isocyanate group blocked, and be crosslinked into a network. These coatings were effective for glass run channels.
SUMMARY OF THE INVENTION
Polyfluorooxetane oligomers and polymers can be functionalized with acrylate, or methacrylate, or allylic, end groups and thereafter used as a polyacrylate in a radiation curable coating composition. These polyfluorooxetanes could also be called fluorinated polyoxetanes or polyoxetanes with partially fluorinated pendant side groups (chains). These fluorinated oxetane repeating units have a single pendant fluorinated side group per repeating unit or they can have two pendant fluorinated side groups per repeating unit. The coating composition comprises the traditional components to a radiation curable coating which include the acrylate, or methacrylate, or allylic, terminated oligomers or polymers, monomer, optional UV initiator, optional second polyfunctional acrylate, or methacrylate, or allylic, oligomer or polymer, and optionally other additives like pigments, plasticizers, rheology modifiers etc.
The acrylate, or methacrylate, or allylic, functionalized polyfluorooxetane can be produced by several methods, but due to the lower reactivity of the hydroxyl groups of the polyfluorooxetane with isocyanate and epoxy groups, it is desirable to sequentially add the reactants so nearly complete functionalization of the polyfluorooxetane can be achieved. Typically an isocyanate or epoxy functionalize polyfluorooxetane is first formed and that is reacted with a hydroxy alkyl acrylate, or methacrylate, or allylic, to form the acrylate, or methacrylate, or allylic, terminated polyfluorooxetane. Alternatively the acrylate, or methacrylate, or allylic, can be epoxy or isocyanate functionalized and that compound reacted with the polyfluorooxetane.
DETAILED DESCRIPTION OF THE INVENTION
Polyfluorooxetane oligomers and polymers can be functionalized with acrylate, or methacrylate, or allylic, end groups and thereafter used as a polyacrylate, or methacrylate, or allylic, in a radiation curable coating composition. These polyfluorooxetanes could also be called fluorinated polyoxetanes or polyoxetanes with partially fluorinated pendant side groups (chains). These pendant side groups include the Rf groups defined later. The coating composition comprises the traditional components to a radiation curable coating which include the acrylate, or methacrylate, or allylic, terminated oligomers or polymers, monomer, optionally UV initiator, optionally a second polyfunctional acrylate, or methacrylate, or allylic, oligomer or polymer or a polyester, and optionally other additives like pigments, plasticizers, rheology modifiers etc. While the acrylate, or methacrylate, or allylic, terminated polyfluorooxetane can be used in about any concentration in the radiation curable coating it is generally effective in an amount of repeating units of the illustrated formula from about 0.005, or from about 0.1, or from about 1 to about 10 weight percent based on the weight of the coating composition.
In a cationic UV system the oxirane ring is opened by a nucleophile. In a UV or e-beam initiated system the acrylate, or methacrylate, or allylic, functional end from a urethane reaction (irsocyante), an expoxy acrylate, transeterification or even an epichlorhydrin reaction, are polymerized, i.e., cured. The functionalized polyfluorooxetane can be produced by several methods, but due to the lower reactivity of the hydroxyl groups of the polyfluorooxetane with isocyanate and epoxy groups, it is desirable to sequentially add to reactants so nearly complete functionalization of the polyfluorooxetane can be achieved. Typically an isocyanate or epoxy functionalize polyfluorooxetane is first formed and that is reacted with a hydroxy alkyl acrylate, or methacrylate, or allylic, to form the urethane acrylate, or methacrylate, or allylic, or epoxy acrylate, or methacrylate, or allylic, terminated polyfluorooxetane. Alternatively the acrylate, or methacrylate, or allylic, can be epoxy or isocyanate functionalized and that compound reacted with the polyfluorooxetane.
The polyfluorooxetane when incorporated into a coating via the acrylate group provides improved wear resistance, scratch resistance, mar resistance, stain resistance, leveling, improved slip and lower coefficient of friction. There are generally enhanced surface properties relative to a coating without the additive. While not being bound by any explanation, it is anticipated that the polyfluorooxetane, to the extent possible while blended with the other components and after curing, migrates to the interfaces between the coating and the substrate and the interface between the coating and the atmosphere providing increased wetting at the solid interface improving adhesion, wetting, gloss/appearance and leveling, lower surface tension at the atmosphere interface for improve wear and stain resistance at the atmosphere interface. The application is focused on coating because molded articles and thicker compositions are more difficult to cure with radiation cures, but this does not preclude their use in thick articles.
The oxetane monomer used to form the polyfluorooxetane has the structure
and the repeating unit derived from the oxetane monomer has the formula
where each n is the same or different and independently, is an integer between 1 and 5, R is hydrogen or an alkyl of 1 to 6 carbon atoms, and each Rf is the same or different and individually on each repeat unit is a linear or branched fluorinated alkyl of 1 to 20 carbon atoms, a minimum of 75 percent of the non-carbon atoms of the alkyl being fluorine atoms and optionally the remaining non-carbon atoms being H, I, Cl, or Br; or each Rf is the same or different and individually is an oxaperfluorinated polyether having from 4 to 60 carbon atoms.
Another focus of this application is adding the properties of the partially of fully fluorinated pendant groups without detracting from the inherent physical properties typically found in vinyl ester resin compositions. This can be achieved as the polyoxetane backbone is very similar in polarity and molecular flexibility to the polyethers (e.g. ethylene oxide and propylene oxide) used in many vinyl ester resin compositions. Further the polyoxetane in being available as a polyol can b

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radiation curable coating containing polyfuorooxetane does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radiation curable coating containing polyfuorooxetane, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation curable coating containing polyfuorooxetane will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3195269

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.