Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
2001-02-14
2003-03-25
Azpuru, Carlos (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C514S772300
Reexamination Certificate
active
06537569
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally radiation-crosslinked, hydrogel materials and methods for using such materials in biomedical or other applications such as for packaging.
BACKGROUND OF THE INVENTION
Hydrogel polymers have found widespread use in the biomedical materials industry as implant materials in both vascular and tissue environments. They are readily fabricated into a variety of morphologies and can exhibit a range of properties depending on their constituents. Their defining feature is the ability to absorb and hold water, a property which is dominated by the presence of hydrophilic groups in the bulk material.
The prior art has included a number of hydrogels that are radiation crosslinked. These radiation crosslinked hydrogels have typically been prepared by by irradiating aqueous solutions of natural and synthetic polymers to cause crosslinking of the polymer chains. Medically, radiation crosslinked hydrogels are primarily used externally, as medical electrode assemblies and as wound dressings. U.S. Pat. No. 5,354,790 discloses formulations of radiation crosslinked hydrogels in the art. U.S. Pat. No. 5,634,943 discloses a formulation of a radiation crosslinked hydrogel for internal use as a corneal implant.
Many hydrogels of the prior art have been prepared from natural materials. The use of hydrogels derived from natural substances in medical implant applications can be problematic due to inherent variability and/or impurities in the natural product and/or the need for laborious and expensive extraction, isolation and refinement of the desired compound(s) or material(s) from the naturally occurring material. Also, in many biomedical applications, such as those where the hydrogel material is implanted into the body of a human or veterinary patient, it is desirable for the hydrogel biodegrade following implantation. However the crosslinkages formed by radiation crosslinking are typically very stable under physiological conditions and do not biodegrade. Thus, if the advantages of a radiation crosslinked hydrogel and biodegradation are desired, it is necessary to introduce regions susceptible to biodegradation to the precursor polymer and/or monomer.
Accordingly, there remains a need in the art for the development of a synthetic; radiation crosslinked hydrogels that are biodegradable and useable in various applications, including, but not limited to, medical implant applications wherein the hydrogel is used as or in conjunction with vascular puncture sealing, tissue engineering, tissue augmentation (cosmetic body sculpting), surgical sealant, hemostatic agents, drug delivery, and packing materials.
SUMMARY OF THE INVENTION
Hydrogel materials of the present invention are prepared by irradiating an aqueous solution of synthetically prepared polymer(s) or monomer(s), at least some of which (or portions of which) are degradable under physiological conditions (e.g., conditions encountered when the hydrogel material is implanted in the intended location within or on the body of a human or veterinary patient). This resultants in formation of a radiation-crosslinked, biodrgradable, synthetic hydrogel that is useable in a variety of medical and non-medical applications. Examples of synthetically prepared polymers that may be crosslinked to form these hydrogels include poly(ethylene glycol), poly(ethylene oxide), poly(ethylene glycol-co-propylene glycol), poly(vinyl pyrrolidinone), poly(vinyl alcohol), acrylic polymers, and methacrylic polymers. Examples of synthetically prepared monomers that may be crosslinked to form these hydrogels include ethylenically unsaturated hydrocarbons such as acrylic monomers and methacrylic monomers.
In accordance with the present invention, when the radiation-crosslinked, biodrgradable, synthetic hydrogel is prepared from polymeric starting materials, degradable moieties or segments may be incorporated into at least some of the polymeric starting materials prior to irradiation. On the other hand, when the hydrogel is formed from monomeric starting materials; a degradable element or moiety may be introduced or incorporated into the hydrogel concurrently with the irradiation. Further in accordance with the present invention, when the crosslinked hydrogel is to be implanted into the body of a mammal, the formulation or structure of the hydrogel may be selected to ensure that the degradation products that result from biodegradation of the hydrogel will be cleared by the patient's kidneys without causing significant kidney damage. Generally, degradation products that have molecular weights of less than 20,000-30,000 can be cleared by human kidneys without causing significant kidney damage, whereas those having molecular weights in excess of 30,000 typically are not cleared and/or cause significant renal damage.
Still further in accordance with the invention, there is provided a biodegradable, radiation crosslinked PEG hydrogel. This biodegradable, radiation crosslinked PEG hydrogel may be formed by a method comprising the steps of a) reacting monomethoxy-poly(ethylene glycol)(mPEG) with a diacid chloride such as succininc or glutaric chloride to form mPEG dimer, b) dissolving the mPEG dimer in phosphate buffer or other suitable aqueous solvent to provide an aqueous mPEG dimer solution having a pH of approximately 5, c) removing dissolved and/or gaseous oxygen from the mPEG dimer solution by bubbling argon through the solution or by other suitable means and d) irradiating the mPEG dimer solution with ionizing radiation, such as electron beam (EB) radiation of sufficient intensity and for sufficient time to cause a desired amount of crosslinkages to from between molecules of the mPEG dimer.
Still further in accordance with this invention, there are provided methods for treating various diseases, conditions, malformations, or disorders of human or veterinary patients by implanting (e.g. injecting, instilling, implanting surgically or otherwise, introducing through a cannula, catheter, needle or other introduction device or otherwise placing) radiation-crosslinked hydrogels of the foregoing character upon or within the body of the patient. Specifically, the radiation crosslinked hydrogels of the present invention may be implanted subcutaneously, in a wound, in a tumor or blood vessels that supply blood to the tumor, in an organ, in an aberrant blood vessel or vascular structure, in a space located between or among tissues or anatomical structures or within a surgically created pocket or space. In this manner, the radiation crosslinked hydrogels of the present invention are useable for hemostasis, tissue augmentation, embolization, vascular puncture closure, and other medical applications.
Further aspects of this invention will become apparent to those of skill in the art upon reading of the detailed description of exemplary embodiments set forth herebelow.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The following detailed description and examples are provided for the limited purpose of illustrating exemplary embodiments of the invention and not for the purpose of exhaustively describing all possible embodiments of the invention.
Set forth herebelow are examples of methods for preparing synthetic, biodegradable, radiation crosslinked hydrogels of the present invention, as well as some examples of methods for using such hydrogel in certain biomedical applications. The synthetic, biodegradable, radiation-crosslinked hydrogels of the present invention may be prepared from either polymeric or monomeric starting materials, and detailed examples of both types of processes are provided herebelow:
Synthesis of Biodegradable, Radiation-Croslinked Hydrogel from Polymeric Starting Materials
1. Preparation of a Macromeric Solution
Initially, a macromeric solution, comprised of aqueous or nearly aqueous solutions of polymers, is prepared. The macromer is comprised of two distinct regions, a water soluble region and a biodegradable region.
The macromer can be any biocompatible, water soluble polymer, including poly(ethylene glycol),
Azpuru Carlos
Buyan Robert D.
MicroVention, Inc.
Stout, Uxa Buyan & Mullins, LLP
LandOfFree
Radiation cross-linked hydrogels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Radiation cross-linked hydrogels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radiation cross-linked hydrogels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3036822