Radar systems

Communications: directive radio wave systems and devices (e.g. – Clutter elimination – Mti

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S159000, C342S160000, C342S162000, C342S195000

Reexamination Certificate

active

06307501

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to radar systems and in particular to the suppression of unwanted signals received by a radar system which have been reflected from fixed objects (clutter) such as terrain features and buildings, in the case when the radar is mounted on a moving platform such as a ship.
2. Discussion of Prior Art
A radar system operates by transmitting electromagnetic signals and receiving these same signals after they have been reflected from targets. However, besides the reflections from the wanted targets, e.g. aircraft, other reflections from unwanted objects occur. These unwanted objects are referred to as clutter, and may include terrain features such as hillsides and cliffs, man made objects such as buildings and fences, and weather phenomena such as rain. The unwanted reflections may in some cases be greater than the reflections from targets.
Methods for suppressing the unwanted reflections and retaining only signals from targets generally rely on the fact that the clutter objects are stationary or only slowly moving. Many radars employ Moving Target Indication (MTI) or Moving Target Detection (MTD), which rely on determining the radial component of the target's velocity (towards or away from the radar) by examining the Doppler shift of the received signal. Suppressing signals which do not have a significant Doppler shift ensures that only fast moving objects are shown as targets. However, this does not completely solve the problem because some targets may have zero radial speed even if they are moving rapidly in a direction tangential to the radar. These wanted targets exhibit low Doppler shifts and are therefore suppressed along with the clutter if only MTI or MTD methods are used.
An alternative approach, which complements MTI and MTD processes used in many radar systems, is to vary the sensitivity of the radar receiver so that areas which are found to return strong signals are examined with lower sensitivity than areas which do not. This involves using a clutter map, in which the radar coverage area is divided into cells and an array of background signal estimates for these cells is stored. Received signals are then only accepted as being from wanted targets if they exceed the stored background level for the cell they occupy by a sufficient factor: if s is the received signal strength and b
i
is the background level stored in the cell, a detection is reported if s >k
T
b
i
, for some fixed ratio k
T
.
The background estimates throughout the map are modified on each scan of the radar so that they gradually converge to the signal levels actually being received. Reflections from fixed scatterers therefore ‘build-in’ to the map and are eventually suppressed. Moving targets, on the other hand, are detected whenever their reflections exceed the levels stored in the clutter map cells they temporarily occupy. If the map cells are small enough, moving targets will not remain in the same cells long enough to ‘build-in’ and affect the stored levels. The operation of clutter maps for stationary radars has been fully described in the literature by M I Skolnik, Radar Handbook, McGraw Hill Book Company, 1978.
The background estimate in each clutter map cell is normally accumulated by ‘&agr; smoothing’. If b
i
, is the current clutter background level in the ith cell, and the greatest level seen in the cell during the current scan is g
i
, the following expression is used to compute the new background level to be used for the next scan period:
(1−&agr;)b
i
+&agr;g
i
where &agr; is a small number, typically ⅛ or {fraction (1/16)}.
The above description of clutter map operation has assumed that a clutter map has already been set up when radar data is received. It is also necessary to consider the problem of initialisation: filling the clutter map with suitable data when the radar is first switched on. If this is done incorrectly, it is possible for many false detections to be reported on the first few scans, due to low initial values of b
i
causing the condition s >k
T
b
i
to be frequently met.
The operation of the clutter map described above clearly depends on the clutter scatterers being stationary with respect to the radar. For this reason, clutter maps have to date only been successfully applied to radar systems operating at fixed locations. A radar mounted on a moving platform, such as a ship or aircraft, will observe clutter which is moving relative to itself. Clutter objects will then move from one clutter map cell to another. Such scatterers will be reported as detections whenever they move into a new clutter map cell which has a low stored background value. Eventually, if the scatterer remains in the cell, the background in the new cell will be raised to prevent this, but the adaption may require a few scans. Also, the cell the scatterer was previously in will be left for a number of scans with an unnecessarily high threshold, which may cause wanted targets to be suppressed. If the radar motion is sufficiently fast, such problems will occur continuously, causing many false detections and loss of target detections.
SUMMARY OF THE INVENTION
An aim of the present invention is to provide an improved radar system which overcomes the above mentioned problems.
According to the present invention there is provided a method of operating a radar system mounted on a moving platform comprising the steps of:
compensating for movement of the platform to retain fixed terrain features within the same cell of a clutter map,
periodically re-centring the clutter map to maintain its origin of co-ordinates close to an actual position of the platform, and,
accelerating an initialisation time of the clutter map so that the step of recentring is achieved a sufficient number of times during rapid movement of the platform.
The method may also include the step of updating the clutter map cell background levels in combination with a detection process to reduce computational load.
The present invention enables compensation of motion to be incorporated into the operation of the clutter map, so that it can still be used effectively when the radar is not stationary.
The clutter map described has four new features which enable it to operate successfully even when the radar is in motion. These are:
Compensation of radar movement.
Periodic re-centring of clutter map.
Fast initialisation following re-centring.
Continuous background level update.
Compensation of ship movement is carried out by adding the known ship position to the location of scatterers before determining which clutter map cell they occupy. It is assumed that the ship position is supplied to the radar on a continuous basis.
A clutter map in polar co-ordinates with stored position offset needs to be re-centred at intervals so that the origin of the polar co-ordinates is kept near the ship position.
This is done by maintaining two maps, one of which is being initialised whilst the other is in use. Every time either of the maps is re-initialised, it is recentred so that its origin coincides with the current ship position.
The need to initialise both maps at frequent intervals means that the initialisation must be carried out in as few scans as possible. The present invention incorporates a way to accelerate the initialisation process, enabling clutter reflections to ‘build-in’ to the map as quickly as possible.
Finally, the process of allowing the observed clutter returns to contribute to the stored background levels has been integrated with the algorithm for determining target detections. This renders the computation involved more efficient and eliminates the need for a special update activity once per radar scan.
The most obvious advantage of the invention is that it eliminates the problems described above when unwanted scatterers move from one clutter map cell to another. This movement is now prevented: objects which are truly stationary will always occupy the same clutter map cell even when the radar moves.
The accelerated initialisation scheme

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radar systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radar systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radar systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2617262

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.