Radar apparatus

Communications: directive radio wave systems and devices (e.g. – Return signal controls external device – Radar mounted on and controls land vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S085000

Reexamination Certificate

active

06348889

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a radar apparatus utilized as a vehicle radar system or the like, and in particular relates to a radar apparatus which can detect a deterioration in sensitivity of the radar apparatus due to an abnormality of the radar apparatus itself or to snow or mud attached to a radome on the front of the radar apparatus.
2. Description of the Related Art
A vehicle radar apparatus has heretofore been made practicable for obstacle detection for preventing collision with surrounding obstacles at the time of travelling along narrow roads, or when putting a vehicle into a garage. Moreover, implementation of a radar apparatus which detects a target object at a relatively short distance, a high speed and at high accuracy, has been recently promoted as an warning system for preventing a rear-end collision with a vehicle driving ahead at the time of driving a vehicle, or as a detection device for a cruise control device (ACC) which maintains a constant vehicle distance with a preceding vehicle while travelling.
For example, in the publication of Japanese Patent No. 2567322, is disclosed a multi-beam radar apparatus in which detection accuracy is improved by radiating spatially overlapping radar beams of millimeter-wave band, using a plurality of transmitter-receiver devices, and changing the combination of the transmitter-receiver circuits. Moreover, in the publication of Japanese Patent Application, First Publication No. Hei. 10-145129, is disclosed a scan beam radar apparatus which oscillates and scans a radio beam radiated from a primary radiator by means of a rotating reflective body and converges the reflected beam by a dielectric lens to thereby radiate the reflected beam in the vehicle driving direction.
However, with such a radar apparatus, for example with the multi-beam radar apparatus, the position of the target object (the azimuth and the distance with respect to the vehicle) is calculated by combining received data observed for each combination of transmit and receive signal circuits. Therefore when a fault occurs in any one of the plurality of transmit and receive circuits, or when snow or mud is unevenly attached to the radome in front of the radar apparatus, an error occurs in the calculated position of the target object. Moreover with the scan beam radar apparatus, in the case of uneven attachment of snow or the like, a similar detection error occurs. Furthermore, when snow or mud is adhered over the whole surface of the radome, then with two radar apparatus where azimuth error is unlikely, the detection sensitivity drops uniformly over the whole azimuth. Therefore a phenomena arises where the measurement range in which the target object can be detected is shortened.
Moreover, in the case where an error occurs in the detection position of the target object due to this phenomena, then for example, with the beforementioned cruise control unit there is a problem in that smoothness is impaired.
Therefore, it has heretofore been necessary to regularly measure the sensitivity of the radar apparatus and can that here is no abnormality therein, such as a sensitivity deterioration in the respective transmitting and receiving circuits, and this sensitivity measurement is performed, for example at regular checks. Moreover, since there is the possibility of the occurrence of a position detection error attributable to a deterioration in sensitivity during travelling or to uneven attachment of snow etc. to the radome, there is a demand for some means which enables sensitivity measurement during travelling. There has been proposed a method for judging the condition of the radar apparatus from, for example the signal strength of a reflection signal from a preceding vehicle, or the signal strength of a reflection signal from a fixed object on the road shoulder such as a guard rail.
However, heretofore sensitivity measurement for radar apparatus has been performed by transporting a vehicle mounted with the radar apparatus to a test environment where a reference target is installed, transmitting and receiving a radar beam to/from the reference target with the vehicle parked at a predetermined test position, and measuring the reception level. Hence there is a problem in that much time and man-hours are required. Moreover, with this method, there is a problem in that in the case where a partial fault occurs in the constituent circuits between periodic check, or in the case where due to uneven snow attachment etc. there is a temporary drop in sensitivity, an error in the target object position cannot be avoided.
Furthermore, with the method where judgment is made using the signal strength of the reflection signal from the preceding vehicle or an object on the road shoulder, with the preceding vehicle or with the object on the road shoulder, there is not always the situation where these have the same reflectivity, and with a travelling environment which also includes weather conditions, the signal strength of the detected reflection signals can be completely different. Consequently, in the case where a drop in the signal strength, for example of the receive signal is observed, it is difficult to make a discriminating judgment as to whether this is a deterioration in the transmit and receive signal strength of the radar apparatus, or that the reflection signal from an object with a low reflection level is being normally received, or simply that there is merely a change in the weather conditions. Hence, a radar apparatus has been desired which can measure the sensitivity while travelling, and diagnose deterioration without being influenced by these individual environmental conditions.
SUMMARY OF THE INVENTION
The present invention has been completed in consideration of the above problems, and disadvantages with the object of providing a radar apparatus which detects and judges a drop in sensitivity of the radar apparatus in the normal travelling condition, without transporting the vehicle to a special environment, so that problems based on errors in the target object position can be avoided beforehand.
To solve the above described problems, with the present invention, with a radar apparatus used mounted on a vehicle and having: a beam transmission device (for example, the transmission section
30
in the embodiment) for rating a radar beam as a transmission signal; a bean reception device (for example, the reception section
40
in the embodiment) for receiving a reception signal reflected from a target object which is within a radiation range of the radiated radar beam; and a processing unit (for example, the detection/control section
50
in the embodiment) for detecting the position of a target object from the transmission signal and the reception signal, the processing unit includes a preceding vehicle judgment device (for example, the preceding vehicle judgment circuit
51
a
in the embodiment) for judging if a preceding vehicle travelling in front of the vehicle (the subject vehicle) in approximately the same direction as the subject vehicle is the same vehicle, as previously detected and a signal strength comparing device (for example, the signal strength comparing circuit
51
c
in the embodiment) for comparing the signal strength of a reception signal reflected from the preceding vehicle, with a signal strength of a reception signal reflected from the preceding vehicle a predetermined comparison reference time prior, to thereby calculate a change amount in signal strength. When the change amount calculated by the signal strength comparing device drops beyond a previously set threshold value and it is judged by the preceding vehicle judgment device that the preceding vehicle is the same vehicle, the processing unit judges that the detection sensitivity of the radar apparatus has dropped.
With the above described construction, the same preceding vehicle ahead of the sect vehicle is made the target, and the signal strength of the current reception signal reflected from this preceding vehicle, and a signs strengt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Radar apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Radar apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Radar apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2945068

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.