Pipe joints or couplings – Particular interface – Interlocked or overlapped
Reexamination Certificate
2002-01-31
2003-02-18
Browne, Lynne H. (Department: 3679)
Pipe joints or couplings
Particular interface
Interlocked or overlapped
C285S027000, C285S403000, C285S404000
Reexamination Certificate
active
06520547
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to pipe and pipe coupling assemblies, and more particularly, to pipe and pipe coupling assemblies that are indexable and that may be disassembled.
BACKGROUND OF THE INVENTION
Pipes and piping systems are useful in a wide variety of applications. Piping systems for transporting or routing solids, liquids, and gases, for example, are virtually ubiquitous throughout home and industry. When installing a piping system, individual pipes are typically acquired in set lengths, and must be assembled by cutting and joining the pipes to produce the desired piping configuration. Different applications may present different pipe joint requirements. In most applications it is important that the pipe joints be strong, so that they do not become failure points for the piping system. This is particularly important when the joints are not easily accessible. In some applications, easy disassembly of the piping joint is desirable—for example, in applications where the piping system is temporary and will ultimately be removed, or in order to accommodate difficulties that might be encountered during field assembly. Also, in many applications it is important that the pipe joints be sealed, either to prevent the material transported within the piping system from leaking out, or to prevent external fluids or contaminates from leaking into the pipe system—or both.
Many different systems have been developed to facilitate assembling and joining pipes, with some systems being more or less suitable for any given application. For example, a home water system employing copper piping is typically installed using sleeve joint elements that are soldered to the pipe. This produces a strong, reliable, and generally permanent pipe joint. Home irrigation systems, on the other hand, typically employ plastic piping that is joined using male and female joint elements that are glued together. This type of piping system is very flexible, easily installed, and relatively inexpensive. Neither of these methods allows for easy disassembly of the piping joints or indexing of one pipe relative to another.
It is sometimes desirable to have a pipe joint that will rotationally index the pipes being joined. For example, inclinometers are frequently used in geological applications to monitor the movement of soil in a specific area of interest. Inclinometers measure inclination relative to the vertical axis, and periodic measurements taken with an inclinometer along a conduit installed in the ground can be compared to detect changes. Typically, a plastic pipe conduit is installed in a drill hole in a generally vertical orientation. The plastic pipe conduit includes oppositely disposed longitudinal grooves along its inner surface that provide a track for the inclinometer, which records inclination while being lowered through the plastic conduit. Because the profiled pipe conduit is constructed by joining a number of separate pipes, the individual pipes must be rotationally aligned, or indexed, so that the longitudinal grooves in the profiled pipes form a continuous track along the length of the pipe conduit. Inclinometers are typically used to monitor movement in landslide-prone areas; monitor dam and embankment performance; determine movement of retaining walls, diaphragm walls, and sheet piles; monitor laterally loaded piles; measure ground movement due to tunneling; and to monitor settlement of landfills, tank foundations, and embankments.
A typical inclinometer system includes a probe, a cable, and a readout. The probe includes a tube with two sets of longitudinally aligned wheels that ride within opposing, longitudinally oriented grooves in an inclinometer conduit placed within the drill hole. The probe contains two tilt sensors-one aligned in the plane of the wheels, and the other in a plane oriented perpendicular to the plane containing the wheels.
The cable is used to raise and lower the probe in the inclinometer conduit and provides conductors for providing power and to transfer signals to and from the probe to a readout device. The cable is marked at intervals of a known distance. The probe is lowered to the bottom of the conduit to be surveyed and drawn toward the surface using the cable. Each time a mark on the cable coincides with the top of the conduit, the probe is halted and a reading is taken until the probe reaches the top of the conduit. A survey conducted in the described manner provides a profile of the drill hole with reference to vertical. By comparing profiles over time, deflection and rate of movement can be calculated.
However, prior to commencement of monitoring, a drill hole with an outer drill casing must be created and an inclinometer conduit installed therewithin. The creation of drill holes and installation of a drill hole casing are well known in the art and will not be described further. The inclinometer conduit is then installed concentrically within the drill casing. After the drill hole and drill casing are installed, a first section of inclinometer conduit is inserted into the drill hole. The remaining sections of inclinometer conduit are successively coupled to one another, until the first section reaches the bottom of the drill hole. For installations in water-filled drill holes, the inclinometer conduit is filled with water, and weights may need to be placed inside the conduit to counter any buoyancy of the inclinometer conduit encountered. Grout is pumped between the drill casing and the inclinometer conduit until all water is displaced and clean grout flows from the drill hole.
The conduit for the inclinometer probe is assembled in the field. Typically, in existing systems, the conduit is constructed from 10-foot sections of pipe, where each section of pipe has a female end and a male end. The male end is inserted within the female end and joined in the field by a combination of solvent cement and rivets. Although inclinometer conduits joined in this manner are somewhat effective, they are not without their problems. Many users find cementing, drilling, and riveting the pipe sections together a time-consuming and thereby expensive process. The solvent cement plus pre-treatment cleaner can be hazardous to the user/environment and messy to handle. Further, the cemented joint may not set up quickly in cold weather. Further still, the cemented joint does not utilize an adjustable fastening means, such as a threaded fastener, to allow the joint to be progressively tightened during assembly. Consequently, the joints are prone to leaking. Even further still, the traditional assembled joints can only be disassembled through destructive means, such as with a hacksaw. Therefore, when an unexpected withdrawal of an assembled inclinometer conduit from a drill hole is required, logistical problems are often encountered as replacement pipe availability issues cause delays and increased costs.
Further yet, traditional coupling systems typically have low tensile strength. The pipe coupling system must have sufficient tensile strength to allow the assembled conduit to support itself without joint separation when freely hanging in a dry drill hole. Most traditional coupling systems are sufficient in this regard. However, even greater tensile strength is desirable to allow the conduit to be pulled from the drill hole if it becomes stuck during installation. Further still yet, the traditional coupling systems have insufficient torsion strength, and failure may occur when a torque is applied. Typically, torque is applied to the conduit by a hollow stem auger or a drill casing as it is rotated during withdrawal and catches the instrumentation conduit. Good practice dictates that such auger or drill-casing rotation should be avoided; however, regardless of good practice, it does occur, resulting in couplings that are twisted and misaligned.
Still further yet, traditional coupling systems often have insufficient resistance to external pressures. For instance, in deep drill holes or under high grout pump pressures, the pressure of the grout near the ba
Browne Lynne H.
Christensen O'Connor Johnson & Kindness PLLC
Hewitt James M.
Phoenix Geometrix, LLC
LandOfFree
Quick locking pipe joint for plain or profiled pipe does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quick locking pipe joint for plain or profiled pipe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quick locking pipe joint for plain or profiled pipe will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3139500