Electricity: battery or capacitor charging or discharging – Battery or cell discharging – With charging
Reexamination Certificate
2000-12-27
2002-03-19
Toatley, Gregory (Department: 2838)
Electricity: battery or capacitor charging or discharging
Battery or cell discharging
With charging
C324S428000
Reexamination Certificate
active
06359419
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a battery pack operating in a hybrid-electric powertrain for a vehicle. More specifically, the present invention relates to a method of managing the state of charge for the battery pack.
BACKGROUND OF THE INVENTION
In today's automotive market, there exist a variety of propulsion or drive technologies used to power vehicles. The technologies include internal combustion engines (ICEs), electric drive systems utilizing batteries and/or fuel cells as an energy source, and hybrid systems utilizing a combination of internal combustion engines and electric drive systems. The propulsion systems each have specific technological, financial, and performance advantages and disadvantages, depending on the state of energy prices, energy infrastructure developments, environmental laws, and government incentives.
The increasing demand to improve fuel economy and reduce emissions in present vehicles has led to the development of advanced hybrid vehicles. Hybrid vehicles are classified as vehicles having at least two separate power sources, typically an internal combustion engine and an electric traction motor. Hybrid vehicles, as compared to standard vehicles driven by an ICE, have improved fuel economy and reduced emissions. During varying driving conditions, hybrid vehicles will alternate between separate power sources, depending on the most efficient manner of operation of each power source. For example, during most operating conditions, a hybrid vehicle equipped with an ICE and an electric motor will shut down the ICE during a stopped or idle condition, allowing the electric motor to propel the vehicle and eventually restart the ICE, improving fuel economy for the hybrid vehicle.
Hybrid vehicles are broadly classified into series or parallel drivetrains, depending upon the configuration of the drivetrains. In a series drivetrain utilizing an ICE and an electric traction motor, only the electric motor drives the wheels of a vehicle. The ICE converts a fuel source to mechanical energy to turn a generator, which converts the mechanical energy to electrical energy to drive the electric motor. In a parallel hybrid drivetrain system, two power sources such as an ICE and an electric traction motor operate in parallel to propel a vehicle. Generally, a hybrid vehicle having a parallel drivetrain combines the power and range advantages of a conventional ICE with the efficiency and electrical regeneration capability of an electric motor to increase fuel economy and lower emissions, as compared with a traditional ICE vehicle. In addition, hybrid vehicles can incorporate both series and parallel paths. Further, hybrids are often described as being either charge depleting or charge sustaining with reference to a battery pack. Charge-depleting hybrids can be charged off the electrical grid; thus, these hybrids share many of the characteristics of purely electric vehicles. In contrast, the batteries in charge-sustaining hybrids receive all of their electrical charging from the ICE.
Battery packs having secondary/rechargeable batteries are an important component of hybrid vehicle systems, as they enable an electric motor/generator (MoGen) to store braking energy in the battery pack during regeneration and charging by the ICE. The MoGen utilizes the stored energy in the battery pack to propel or drive the vehicle when the ICE is not operating. During operation, the ICE will be shut on and off intermittently, according to driving conditions, causing the battery pack to be constantly charged and discharged by the MoGen. The state of charge (SOC, defined as the percentage of the full capacity of a battery that is still available for further discharge) is used to regulate the charging and discharging of the battery.
The preferred embodiment of the present invention utilizes a nickel/metal hydride (NiMH) battery in the battery pack. A NiMH battery stores hydrogen in a metal alloy to generate potential/voltage. When a NiMH cell is charged, hydrogen generated by the cell electrolyte is stored in the metal alloy (M) in the negative electrode. Meanwhile, at the positive electrode, which typically consists of nickel hydroxide loaded in a nickel foam substrate, a hydrogen ion is ejected and the nickel is oxidized to a higher valence. On discharge, the reactions reverse. The reaction at the negative electrode is more clearly shown by the following reaction diagram:
MH
x
+OH
−
←→MH
x−1
+H
2
O+e
−
The discharging direction is represented by →. The charging direction is represented by ←.
On discharge, OH−ions are consumed at the negative hydride electrode and generated at the nickel oxide positive electrode. The converse is true for the water molecules.
A difficulty with NiMH batteries is predicting their SOC because of the charging and discharging characteristics of NiMH battery technology. Referring to
FIG. 1
, typical charge increasing
10
and charge decreasing
12
curves are illustrated for a NiMH battery. Referencing points A and B and points C and D, it can be shown that the voltages are the same while the SOCs are substantially different. Thus, it is very difficult to use an open circuit voltage to accurately predict the SOC of the NiMH battery, as the battery operating mode (charge increasing, charge sustaining or charge decreasing) must be known. When used with a hybrid vehicle, the intermittent charging and discharging of the battery pack amplifies the problems associated with predicting the SOC of a NiMH battery back.
SUMMARY OF THE INVENTION
The present invention includes a method and apparatus to more clearly determine or predict the state of charge (SOC) of a battery pack utilizing NiMH batteries or any other battery technology known in the art such as lead acid, lithium polymer, etc. The method of the present invention includes an SOC algorithm that utilizes coulomb integration and a voltage-based model to extract a battery pack's SOC from recorded current and potential data.
The present invention further includes a vehicle having both parallel and series hybrid drive systems incorporating a hybrid system controller executing the methods of the present invention, an ICE, and a MoGen that charges and discharges the battery pack. The MoGen not only provides for propulsion of the vehicle during certain vehicle operating conditions but also replaces an alternator to charge the battery pack in the vehicle and replaces a conventional starter motor to start the ICE. The hybrid drive system of the present invention will utilize the ICE and MoGen to propel or motor the vehicle during the vehicle conditions which are most efficient for the ICE or MoGen operation. The transfer of power between the MoGen and ICE or vice versa is transparent to the operator or driver, as the vehicle will perform as if there is only one drive system propelling the vehicle.
During normal operation of the vehicle when the ICE is running, the MoGen will act as an electrical generator to supply electrical power to the vehicle's electrical infrastructure (fans, radios, instrumentation, control, etc.) as well as recharging the battery pack. The battery pack and a power transfer device, such as a DC-DC converter, will supply power to the vehicle electrical infrastructure and power the MoGen when it is operating as the motoring device for the vehicle. In the motoring mode, the MoGen is an electrical load drawing current from the battery pack.
REFERENCES:
patent: 4595880 (1986-06-01), Patil
patent: 5187424 (1993-02-01), Benz et al.
patent: 5563496 (1996-10-01), McClure
patent: 5796239 (1998-08-01), Van Phuoc et al.
patent: 5963016 (1999-10-01), Arai et al.
patent: 6262577 (2001-07-01), Nakao et al.
patent: 07151841 (1995-06-01), None
Koch Brian James
Sarbacker Shawn D.
Tate, Jr. Edward Dean
Verbrugge Mark William
DeVries Christopher
General Motors Corporation
Toatley Gregory
LandOfFree
Quasi-adaptive method for determining a battery's state... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quasi-adaptive method for determining a battery's state..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quasi-adaptive method for determining a battery's state... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2886137