Quarter-turn rotary plug valve with seats reciprocable...

Valves and valve actuation – With means to increase head and seat contact pressure – With positive reduction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C251S158000, C251S162000, C251S170000, C251S192000, C251S304000, C251S314000, C251S315010

Reexamination Certificate

active

06378841

ABSTRACT:

BRIEF DESCRIPTION OF THE INVENTION
The present invention relates in general to a method and apparatus for controlling fluid flow with a quarter-turn plug valve with seats operated to lift off the sealing surface of the plug prior to plug rotation and to reseat upon completion of plug rotation. More particularly, the invention relates to a quarter-turn rotary ball valve having a handle operable through a 90° angle and having both upstream and downstream seats which are operated to lift off from the sealing surface of the ball prior to initiation of ball rotation and then reseat upon completion of ball rotation.
BACKGROUND OF THE INVENTION
Certain types of on/off valves have severely attenuated lives due to very concentrated flows with non-axial components during the initial stages of valve opening and final stages of valve closing. In particular, the seats of ball valves and rotary plug valves are susceptible to damage from this type of flow. A second problem which impacts valve actuation is high actuation forces and seat wear due to friction from relative motion of the seats and the sealing plug. This type of problem is common to ball valves, rotary plug valves, and gate valves.
Numerous attempts have been made to overcome these problems for on/off valves. For example, valves have been designed to overcome such problems by reciprocably separating the valve seat(s) from the sealing plug (e.g., a ball, plug, or gate) prior to actually moving the sealing plug and reseating the valve seat(s) onto the sealing plug when the sealing plug reaches its new position. Unseating the valve seat during movement permits a considerable reduction in valve operating force and provides a temporary flow path during operation which is less susceptible to abrasive and cavitational wear than valves with standard, non-reciprocating seats.
U.S. Pat. No. 3,993,136 to Mott discloses a ball valve with lift-off seats configured for operation as a downhole safety valve. This valve operates by means of a linearly reciprocating hydraulic piston concentric with the flow axis of the valve and operating a mechanism which raises the seats from the ball surface prior to rotation and then reseats the valve seats upon completion of rotation. However, this ball valve is unsuitable for operation either manually or by a conventional 90° actuator.
U.S. Pat. No. 4,548,384 to Harding discloses a ball valve which has a stationary downstream seat and an eccentrically-mounted ball as a sealing plug. Valve stem rotation causes the valve plug to lift off of the stationary seat due to the eccentricity between the stem and the ball. The opened ball is then reseated by camming into engagement with the upstream seat. The ball only touches one seat at a time, so that trash buildup within the valve is a major problem. In addition, the valve has limited use as it can only seal in one direction.
U.S. Pat. No. 5,179,973 to Dickson et al. discloses another downhole valve operable by a piston reciprocating concentrically with the valve flow axis. This valve causes the ball to lift from its seat due to the applied operating force from the piston during operation when opening, while causing the valve to be pulled against its seat during shifting to its closed position. However, like the Harding valve, it will only hold pressure from one direction.
U.S. Pat. No. 5,005,805 to Morris et al. discloses a tapered plug valve which separates the valve plug from its seats by reciprocably lifting the plug about its rotational axis which is transverse to the valve flow axis. The valve plug is rotated after the plug is lifted, and then the valve plug is reseated after completion of rotation. A stem rotation of more than 90° and a special actuator are required to operate this valve. Furthermore, while the transverse reciprocation of the tapered plug causes it to disengage/engage with the seats, the spherical configuration of ball valve sealing surfaces are not compatible with this type of actuation.
U.S. Pat. No. 4,989,641 to Jones et al. discloses a rotary selector valve which uses a Geneva-wheel to move a reciprocable seal out of and into engagement with a sealing port. This device requires a complete turn of its rotational shaft to effect a shifting from one port to another and is not suitable for operation with a conventional 90° actuator.
U.S. Pat. No. 4,340,088 to Giesow discloses a downhole safety valve with a partial ball valve sealing plug which is operated by a flow axis axially reciprocable piston. The sealing plug both rotates and reciprocates away from its seat during actuation to the open position. The actuation motion is produced by a lost-motion rack-and-pinion device. This valve is only single seated, so that it only holds pressure from one side.
European Patent EP 0 647 301 B1 to Coufts et al. discloses a ball valve operable by a piston coaxial with the flow axis of the valve. This valve causes the sealing plug to lift off the seat and then rotate during opening. The valve is not reseated in its open position, so trash buildup is likely. Closing reverses the operation. The valve is only seated for holding pressure from one side.
Thus, a need exists for a valve that can seal for pressure from either direction that provides a reduced valve operating force, is less susceptible to abrasive and cavitational wear, and is operable with a conventional 90° actuator or manual rotation.
SUMMARY OF THE INVENTION
The invention contemplates a valve that preserves the 90° actuation rotation of conventional on/off ball valves while providing the separation of the valve seats from the ball sealing plug prior to and following rotation of the valve plug for actuation. The valve of this invention seals for pressure from either direction by using both upstream and downstream seats.
The disclosed valve will reciprocably separate the valve seat(s) from the sealing plug (e.g., a ball or plug) prior to actually moving the sealing plug, move the sealing plug to its new position (a 90° rotation for a ball or plug valve), and reseat the valve seat(s) onto the sealing plug. This unseating/reseating of the valve seats is done for both opening and closing operations. The disclosed valve permits a considerable reduction in valve operating force, even under high pressures, and provides a temporary flow path during operation which is less susceptible to abrasive and cavitational wear than standard, non-reciprocating valves.
A preferred embodiment of the invention utilizes a planetary gear train to multiply the rotary actuation shaft motion, while a lost motion coupling between the member driven by the multiplied input shaft motion and the ball permits the driven member to operate a rotary barrel cam to actuate the valve seats prior to ball rotation. Alternatively, any other type of suitable motion-multiplying device, such as shown in U.S. Pat. Nos. 5,312,306 or 5,321,988 and incorporated herein by reference, could be used in place of the planetary gear train.
A preferred embodiment of a quarter-turn has a tubular body having a bore flow passage; a valve element having a through flow passage and two sealing surfaces, the valve element rotatable through a quarter turn about an axis transverse to the through flow passage, wherein the through flow passage is aligned with the bore flow passage to permit flow when the valve element is positioned at a first end of the quarter turn and is misaligned with the bore flow passage to prevent flow when the valve element is at a second end of the quarter turn; an actuating valve stem selectively operable through a quarter-turn input motion for effecting opening or closing of said valve element to permit or prevent flow; motion multiplication means operated by rotation of the actuating valve stem; barrel cam means coaxial with the bore flow passage, the cam means engaging the motion multiplication means whereby motion is transmitted to the cam means through a direct-drive coupling; reciprocable seat means providing a seal with the sealing surfaces when in a first position and separated from the sealing surfaces when in a second posi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Quarter-turn rotary plug valve with seats reciprocable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Quarter-turn rotary plug valve with seats reciprocable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quarter-turn rotary plug valve with seats reciprocable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2931053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.