Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity
Reexamination Certificate
2005-09-13
2005-09-13
Crane, Sara (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Thin active physical layer which is
Tunneling through region of reduced conductivity
C257S039000, C365S162000, C365S215000
Reexamination Certificate
active
06943368
ABSTRACT:
A method for quantum computing with a quantum system comprising a first energy level, a second energy level, and a third energy level. The first energy level and said second energy level are capable of being degenerate with respect to each other. In the method a signal is applied to the quantum system. The signal has an alternating amplitude at an associated frequency such that (i) the frequency of the signal correlates with an energy level separation between the first energy level and the third energy level or (ii) the frequency of the signal correlates with an energy level separation between the second energy level and the third energy level. The signal induces an oscillation in the state of the quantum system between the first energy level and the second energy level.
REFERENCES:
patent: 5323344 (1994-06-01), Katayama et al.
patent: 5768297 (1998-06-01), Shor
patent: 6459097 (2002-10-01), Zagoskin
patent: 6495854 (2002-12-01), Newns et al.
patent: 6563311 (2003-05-01), Zagoskin
patent: 6627915 (2003-09-01), Ustinov et al.
patent: 6803599 (2004-10-01), Amin et al.
patent: 2004/0077503 (2004-04-01), Blais et al.
U.S. Appl. No. 60/341,974, Il'ichev et al.
U.S. Appl. No. 60/370,087, Lidar et al.
U.S. Appl. No. 60/429,170, Amin et al.
Amin, M.H.S., A.N. Omelyanchouk, A.M. Zagoskin, 2001, “Mechanisms of spontaneous current generation in an inhomogeneous d-wave superconductor,” Phys. Rev. B 63, 212502.
Amin, M.H.S., A.N. Omelyanchouk, S.N. Rashkeev, M. Coury, A.M. Zagoskin, 2002, “Quasiclassical Theory of Spontaneous Currents at Surfaces and Interfaces of d-wave Superconductors,” Physica B 318, 162.
Averin, D.V., J.R. Friedman, J.E. Lukens, 2000, “Macroscopic resonant tunneling of magnetic flux,” Phys. Rev. B 62, 11802.
Blais, A., A. Maassen van den Brink, A.M. Zagoskin, 2003, “Tunable Coupling of Superconducting Qubits,” Phys. Rev. Lett. 90, 127901.
Blais, A., A.M. Zagoskin, 2000, “Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors,” Phys. Rev. A 61, 042308.
Bruder, C., A. van Otterlo, G.T. Zimanyi, 1995, “Tunnel junctions of unconventional superconductors,” Phys. Rev. B 51, 12904.
Cohen-Tannoudji, C.N., 1998, “Manipulating atoms with photons,” Rev. Mod. Phys. 70, p. 707-719.
DiVincenzo, D.P., 2000, “The Physical Implementation of Quantum Computation”, published on ArXiv. org preprint server: quant-ph/0002077.
Dodd, J.L., M. A. Nielsen, M.J. Bremner, and R.T. Thew, 2002, “Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries,” Phys. Rev. A 65, 040301.
Do{hacek over (s)}lić, N., O. Kühn, J. Manz, K. Sundermann, 1998, “The ‘Hydrogen Subway’—A Tunneling Approach to Intramolecular Hydrogen Transfer Reactions Controlled by Ultrashort Laser Pulses,” Jour. Phys. Chem. A 102, 9645-9650.
Ferguson, A.J., P.A. Cain, D.A. Williams, G.A.D. Briggs, 2002, “Ammonia-based quantum computer,” Phys. Rev. A 65, 034303.
Feynman, R., 1965,The Feynman Lectures on Physics vol. 3,Addison-Wesley, Reading, Mass., pp. 8.11-8.14.
Friedman, J.R., D.V. Averin, 2002, “Aharonov-Casher-Effect Suppression of Macroscopic Tunneling of Magnetic Flux,” Phys. Rev. Lett. 88, 050403.
Il'ichev, E., M. Grajcar, R. Hlubina, R. P. J. IJsselsteijn, H. E. Hoenig, H.-G. Meyer, A. Golubov, M. H. S. Amin, A. M. Zagoskin, A. N. Omelyanchouk, M. Yu. Kupriyanov, 2001, “Degenerate Ground State in a Mesoscopic YBa2Cu3O7-xGrain Boundary Josephson Junction,” Phys. Rev. Lett. 86, 5369.
Il'ichev, E., V. Zakosarenko, L. Fritzsch, R. Stolz, H.E. Hoenig, H.-G. Meyer, M. Götz, A.B. Zorin, V.V. Khanin, A.B. Pavolotsky, J. Niemeyer, 2001, “Radio-frequency based monitoring of small supercurrents,” Rev. Sci. Instru. 72, 1882-1887.
Kulik, I.O., T. Hakioglu, A. Barone, 2002, “Quantum Computational Gates with Radiation Free Couplings,” arXiv.org:cond-mat/0203313.
Lu, N., E.J. Robinson, P.R. Berman, 1987, “Coherent dynamics and complete population depletion of a special three-level quantum system,” Phys. Rev. A 35, 5088-5098.
Maassen van den Brink, A., 2003, “Comment on ‘Aharonov-Casher-Effect Suppression of Macroscopic Tunneling of Magnetic Flux’,” arXiv.org:cond/mat/0206218.
Makhlin Y., G. Schön, and A. Shnirman, 2001, “Quantum-State Engineering with Josephson-Junction Devices,” Rev. of Mod. Phys. 73, pp. 357-400.
Martinis, J.M., S. Nam, J. Aumentado, C. Urbina, 2002, “Rabi Oscillations in a Large Josephson-Junction Qubit,” Phys. Rev. Lett. 89, 117901.
Metcalf, J., P. van der Straten, 1999,Laser Cooling and Trapping,Springer-Verlag, New York, pp. 259-261.
Mooji, J.E., T.P. Orlando, L. Levitov, L. Tian, C.H. van de Wal, S. Lloyd, 1999, “Josephson Persistent-Current Qubit,” Science 285, 1036.
Murali, K.V.R.M., D.S. Crankshaw, T.P. Orlando. Z. Dutton, W.D. Oliver, 2003, “Probing Decoherence with Electromagnetically Induced Transparency in Superconductive Quantum Circuits,” arXiv.org:cond-mat/0311471.
Nicoletti, S., H. Moriceau, J.C. Villegier, D. Chateigner, B. Bourgeaux, C. Cabanel, J.Y. Laval, 1996, “Bi-epitaxial YBCO grain boundary Josephson junctions on SrTiO3and sapphire substrates,” Physica C 269, 255-267.
Nielsen, M.A., and I.L. Chuang, 2000,Quantum Computation and Quantum Information,Cambridge University Press, Cambridge, UK, p. 174.
Orlando, T.P., J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, 1999, “Superconducting persistent-current qubit,” Phys. Rev. B 60, 15398.
Palao, J.P., R. Kosloff, 2002, “Quantum Computing by an Optimal Control Algorithm for Unitary Transformations,” Phys. Rev. Lett. 89, 188301.
Plastina, F., G. Falci, 2002, “Communicating Josephson Qubits,” arXiv.org:cond-mat/0206586.
Shore, B.W., 1990,The Theory of Coherent Atomic Excitationvol. 2, Wiley, New York, section 13.7.
Tian, L., S. Lloyd, 2000, “Resonant cancellation of off-resonant effects in a multilevel qubit,” Phys. Rev. A 62, 050301.
Yu, Y., S. Han. X. Chu, S.-I Chu, Z. Wang, 2002, “Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction,” Science 296, 889-892.
Zagoskin, A.M., 1999, “A scalable, tunable qubit, based on a clean DND or grain boundary D-D junction,” arXiv.org:cond-mat/9903170.
Zhou, Z.Y., S.-I Chu, S. Han, 2002, “Quantum computing with superconducting devices: A three-level Squid qubit,” Phys. Rev. B 66, 054527.
Amin Mohammad H. S.
Hilton Jeremy P.
Maassen van den Brink Alexander
Smirnov Anatoly Yu.
Steininger Miles F. H.
Crane Sara
D-Wave Systems Inc.
Jones Day
Lovejoy Brett
LandOfFree
Quantum logic using three energy levels does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quantum logic using three energy levels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum logic using three energy levels will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3413373