Quantum dot light emitting layer

Active solid-state devices (e.g. – transistors – solid-state diode – Incoherent light emitter structure – With particular semiconductor material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S013000, C257S017000, C257SE33006, C977S950000, C438S047000

Reexamination Certificate

active

07615800

ABSTRACT:
An inorganic light emitting layer having a plurality of light emitting cores, each core having a semiconductor material that emits light in response to recombination of holes and electrons, each such light emitting core defining a first bandgap; a plurality of semiconductor shells formed respectively about the light emitting cores to form core/shell quantum dots, each such semiconductor shell having a second bandgap wider than the first bandgap; and a semiconductor matrix connected to the semiconductor shells to provide a conductive path through the semiconductor matrix and to each such semiconductor shell and its corresponding light emitting core so as to permit the recombination of holes and electrons.

REFERENCES:
patent: 6753108 (2004-06-01), Hampden-Smith et al.
patent: 7087833 (2006-08-01), Scher et al.
patent: 7150910 (2006-12-01), Eisler et al.
patent: 2005/0051766 (2005-03-01), Stokes
patent: 1 231 250 (2002-08-01), None
Tang et al, Organic electroluminescent diodes, Appl. Phys. Lett. 51, 913-915 (1987).
Burroughes et al., Light-emitting diodes based on conjugated polymers, Nature 347, 539-541 (1990).
Matoussi et al., Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals J. Appl. Phys. 83, 7965 (1998).
Hikmet et al., Study of conduction mechanism and electroluminescence in CdSe/Zns quantum dot composites, J. Appl. Phys. 93, 3509-3514 (2003).
Coe et al., Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420, 800-802 (2002).
Mueller et al., Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers, Nano Letters 5, 1039-1044 (2005).
S. Nakamura et al., Bright electroluminescence from CdS quantum dot LED structures, Electron. Lett. 34, 2435-2436 (1998).
R. Rossetti et al., Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, J. Chem. Phys. 79, 1086-1087 (1983).
R. Xie et al., Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/ZN0.5Cd0.5S/ZnS Multishell Nanocrystals J. Am. Chem. Soc. 127, 74807488 (2005).
X. Peng et al., Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility J. Am. Chem. Soc. 119, 7019-7029 (1997).
0. Masala and R. Seshadri, Synthesis Routes for Large Volumes Of Nanoparticles Annu. Rev. Mater. Res. 34, 41-81 (2004).
A. A. Bol et al., Factors Influencing the Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+, Phys. Stat. Sol. B224, 291-296 (2001).
R. Rossetti et al., Size effects in the excited electronic states of small colloidal CdS crystallites, J. Chem. Phys. 80, 4464-4469 (1984.
M. A. Hines et al., Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem. 100, 468-471 (1996).
A. R. Kortan et al., Nucleation and Growth of CdSe on ZnS Quantum Crystalline Seeds, and Vice Verse, in Inverse Micelle Media. Am. Chem. Soc. 112, 1327-1332 (1990).
C. B. Murray et al., Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 30, 545-593 (2000).
A. N. Goldstein et al., Melting in Semiconductor Nanocrystals, Science 256, 1425-1426 (1992).
S. B. Qadri et al., Size-induced transition-temperature reduction in nanoparticles of ZnS, Phys. Rev B60, 9191-9193 (1999).
S. A. Ivanov et al., Light-Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exicton Regime, J. Phys. Chem. 108, 10625-10630 (2004).
D. V. Talapin et al., CdSe/CdS/ZnS and CdSe/ZnSe/ZnSe/Zns Core-Shell-Shell Nanocrystals, J. Phys. Chem. 108, 1882618831 (2004).
K. B. Kahen, Rigorous optical modeling of multilayer organic light-emitting diode devices, Appl. Phys. Lett. 78, 1649-1651 (2001).
S. W. Lim, High p-type doping of ZnSe using Li3N diffusion, Appl. Phys. Lett. 65, 2437-2438 (1994).
P. J. George et al., Doping of chemically deposited intrinsic CdS thin films to n type by thermal diffusion of indium, Appl. Phys. Lett. 66, 3624-3626 [1995].
M. A. Hines et al., Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals, J. Phys. Chem. B102, 36553657 [1998].
J. Lee et al., Thin Solid Films 431-432, 344 [2003.
A. A. Khosravi et al., Manganese doped zinc sulphide nanoparticles by aqueous method, Appl. Phys. Lett. 67, 2506-2508 [1995].
D. V. Talapin et al., Highly Luminescent Monodisperse SdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture, Nano Lett. 4, 207-211 [2001].
“GaInP2 overgrowth and passivation of colloidal InP nanocrystals using metalorganic chemical vapor deposition” by M. C. Hanna et al., Applied Physics Letters, AIP, American Institute of Physics, Melville, NY, vol. 84, No. 5, Feb. 2, 2004, pp. 780-782.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Quantum dot light emitting layer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Quantum dot light emitting layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum dot light emitting layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4129871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.