Data processing: speech signal processing – linguistics – language – Speech signal processing – Psychoacoustic
Reexamination Certificate
1999-04-12
2002-03-26
{haeck over (S)}mits, T{overscore (a)}livaldis Ivars (Department: 2641)
Data processing: speech signal processing, linguistics, language
Speech signal processing
Psychoacoustic
C704S229000, C704S230000
Reexamination Certificate
active
06363338
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to the perceptual coding of digital audio signals that uses analysis filters for encoding and synthesis filters for decoding. The present invention relates more particularly to the quantization of subband signals in perceptual coders that takes into account the spreading of quantization noise by the synthesis filters.
BACKGROUND ART
There is a continuing interest to encode digital audio signals in a form that imposes low information capacity requirements on transmission channels and storage media yet can convey the encoded audio signals with a high level of subjective quality. Perceptual coding systems attempt to achieve these conflicting goals by using a process that encodes and quantizes the audio signals in a manner that uses larger spectral components within the audio signal to mask or render inaudible the resultant quantizing noise. Generally, it is advantageous to control the shape and amplitude of the quantizing noise spectrum so that it lies just below the psychoacoustic masking threshold of the signal to be encoded.
A perceptual encoding process may be performed by a so called split-band encoder that applies a bank of analysis filters to the audio signal to obtain subband signals having bandwidths that are commensurate with the critical bands of the human auditory system, estimates the masking threshold of the audio signal by applying a perceptual model to the subband signals or to some other measure of audio signal spectral content, establishes a quantization resolution for quantizing each subband signal that is just small enough so that the resultant quantizing noise lies just below the estimated masking threshold of the audio signal, and generates an encoded signal by assembling the quantized subband signals into a form suitable for transmission or storage. A complementary perceptual decoding process may be performed by a split-band decoder that extracts the quantized subband signals from the encoded signal, obtains dequantized representations of the quantized subband signals, and applies a bank of synthesis filters to the dequantized representations to generate an audio signal that is, ideally, perceptually indistinguishable from the original audio signal.
The perceptual models that are often used to determine the quantization resolution generally assume that the quantization noise introduced into the quantized subband signals is substantially the same as the noise that results in the output signal obtained by applying a bank of synthesis filters to the quantized subband signals. In general, this assumption is not true because the synthesis filters modify or spread the quantization noise spectrum. As a consequence, quantization performed strictly according to the quantization resolutions obtained by applying these perceptual models usually results in audible noise in the output signal obtained from the synthesis filters.
This noise-spreading phenomenon is true for a wide variety of implementations for the analysis and synthesis filters. These implementations include polyphase filters, lattice filters, the quadrature mirror filter, various time-domain-to-frequency-domain block transforms including a wide variety of Fourier-series type transforms, cosine-modulated filterbank transforms and wavelet transforms. For convenience, signal analysis and signal synthesis techniques that are suitable for use with the present invention are all referred to herein as the application of analysis filters and synthesis filters, respectively. In transform implementations, the subband signals each comprise a group of one or more frequency-domain transform coefficients.
The synthesis filter noise-spreading property mentioned above is related to the fact that the complementary analysis and synthesis filters used in these coding systems do not implement ideal filters having a flat unitary-gain in the passband, zero-gain in the stopbands, and infinitely steep transitions between the stopbands and the passband. As a consequence, the analysis filters provide only a distorted measure of the spectral content of an input audio signal. Furthermore, some filters such as the quadrature mirror filter (QMF) and the time-domain aliasing cancellation (TDAC) transforms generate significant aliasing artifacts that further distort the spectral measure of the input signal. In principle, these artifacts and deviations from perfect filters can be ignored because complementary pairs of analysis and synthesis filters can be used in which the synthesis filters are able to reverse the distortions of the analysis filter and perfectly reconstruct the original input signal.
Although perfect reconstruction is possible in principle, it is not achieved in practical coding systems because perfect reconstruction requires the synthesis filters to receive a precise representation of the subband signals generated by the analysis filters. Instead, the synthesis filters receive a representation with significant errors that are introduced by the quantization processes described above. As a result, subband signal quantization introduces errors that manifest themselves as noise in the signal that is reconstructed by the synthesis filters. As disclosed in U.S. Pat. No. 5,623,577, which is incorporated herein by reference in its entirety, the quantizing errors in a subband signal are spread by the synthesis filters into a range of frequencies that can be wider than the frequency subband of the quantized subband signal itself.
Unfortunately, perceptual encoding processes like those described above do not quantize the subband signals in an optimum manner because the quantization processes do not include a proper consideration for the noise-spreading process that occurs in the synthesis filters. Coding techniques disclosed in U.S. Pat. No. 5,301,255 do include some allowance for the aliasing that is generated by decimating the output of an analysis filter but these techniques do not provide any allowance for noise spreading in the synthesis filter. As a result, these processes overestimate the quantization resolutions that render the quantizing noise inaudible. This deficiency can be compensated to some degree by either forcing the level of the estimated masking threshold to be lower than an accurate perceptual model would indicate, or by uniformly decreasing the quantization resolution below that which an accurate perceptual model would indicate is sufficient to render the quantizing noise inaudible. Neither form of compensation is optimum because they do not properly account for the cause of the deficiency.
U.S. Pat. No. 5,623,577 discloses several techniques that compensate for the noise-spreading effect of synthesis filters. The theoretical basis of the disclosed techniques assumes the degree of noise spreading can be determined by convolving the quantization noise spectrum with the synthesis filter frequency response. Disclosed embodiments of the techniques determine whether compensation for synthesis filter noise spreading is required by comparing frequency-domain slopes of an estimated masking threshold with threshold values that are determined empirically. Unfortunately, these techniques are not optimum because the accuracy for determining whether compensation is needed is suboptimal, the steps required to obtain the needed empirical threshold values are expensive and time consuming, and the disclosed techniques do not take into consideration the effects of overlap-add processes that are included in some synthesis filters such as QMF and the TDAC transforms. In addition, the disclosed techniques do not provide an ability for a particular embodiment to gracefully tradeoff the accuracy of compensation against the computational resources required to carry out the embodiment.
DISCLOSURE OF INVENTION
It is an object of the present invention to improve the performance of perceptual coding systems and methods that use analysis and synthesis filters by providing a quantization process that accurately compensates for noise spreading in synthesis filters.
Advantageous embodim
Davidson Grant Allen
Ubale Anil Wamanrao
Dolby Laboratories Licensing Corporation
Gallagher & Lathrop
Lathrop, Esq. David N.
{haeck over (S)}mits T{overscore (a)}livaldis Ivars
LandOfFree
Quantization in perceptual audio coders with compensation... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quantization in perceptual audio coders with compensation..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantization in perceptual audio coders with compensation... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2822902