Radiant energy – Luminophor irradiation
Reexamination Certificate
2000-02-09
2002-10-29
Hannaher, Constantine (Department: 2878)
Radiant energy
Luminophor irradiation
C378S044000, C356S213000
Reexamination Certificate
active
06472671
ABSTRACT:
TECHNICAL FIELD
This invention relates to microscopy and more particularly to the calibration of fluorescence detection microscopes, to the calibration of on-axis, wide field of view scanning fluorescence microscopes, and ultimately to quantified fluorescent microscopy having application from the forefront of genomic research and drug discovery to clinical use. The invention has particular application to the accurate reading of biochips and micro arrays.
BACKGROUND
Testing or calibration targets are employed to evaluate system performance of conventional microscopes. These are used to establish a baseline between different microscope systems and to characterize image quality in terms of its conventional components: resolution, contrast, depth of field and distortion. Common offerings for conventional microscopy are the USAF Field Resolution target, the USAF Contrast Resolution Target, the Star Target, the Ronchi Ruling Targets, Modulation Transfer Function Targets, Depth of Field Targets, and Distortion and Aberration Targets. There are others.
The targets are typically printed or vapor deposited patterns on plastic or glass substrates. The optical features on the target are preferably finer than the resolution of the optical system being tested. While it is desirable that the reference features have dimensions or parameters an order of magnitude smaller than those of the specimens to be examined by the microscope, practitioners have had to accept reference dimensions or parameters only 4 or 5 times smaller than those of the specimens to be examined.
Fluorescent microscopy of specimens is different from and more demanding than conventional microscopy because it is based on relatively low-level fluorescent emissions excited by illumination of the specimen, typically employing confocal arrangements for detecting the relatively weak signal through a pin hole or the like. An example is the detection of fluorescence from dried liquid spots containing possibly fluorescing biological material, the dried spots being essentially at the focal plane of the instrument (dried spot thickness less than a few microns). Another example is fluorescence from a biological microarray such as from a Microchip® biological array product, as produced by Affymetrix, Inc., in which the fluorescing material is of insignificant thickness.
For testing or calibration targets for fluorescence microscopy, besides the numerous conventional components of image quality, there is the requirement of testing the optical efficiency of the system in respect of fluorescence emission. This introduces significant complications, as fluorescence involves an excited photochemical effect, to produce a voltage or signal level in the detector, that introduces signal to noise ratio considerations that interact with measurements of the various optical components involved in the calibration. In general the signal to noise ratio must be at least 3 to 1 to obtain satisfactory operation.
It has been an unsolved problem, to find a calibration target that adequately simulates the fluorescent activity which it is desired to quantify over a broad range of instruments and conditions of use. It is wished to simulate fluorescing specimens that generally lie within the depth of field of the microscope, and in the case of micro dots of biological material, lie essentially at a plane, e.g. in a depth of only a few microns or even substantially less. As the dimensions of individual specimens to be imaged become increasingly smaller as microarray technology advances, the significance of not having a suitable calibration tool has become increasingly severe.
The difficulties for fluorescent microscopy is that, without the desired degree of calibration, it becomes difficult to compare the results obtained in biological or other research performed with different instruments, thus creating serious difficulties in comparing and coordinating the results of different laboratories, whether the laboratories be at different institutions, or separate laboratory facilities within the same institution. Likewise, even with a given instrument, the uncertainties of calibration can introduce errors in the measurement of important actions such as proportional expression, etc. In particular the lack of good reference and calibration is felt at the forefront of research where results are so new and there has been insufficient time or experience to generate reliable standards. The development of true quantified fluorescence microscopy can fulfill this need.
On the other hand, the availability of a strong calibration tool is seen to open the possibilities of inexpensive and reliable fluoresence instrumentation and procedures for the clinical setting for diagnosis and treatment.
PRIOR ART
Existing calibration tools for conventional microscopy do not satisfactorily fill the needs of fluorescence microscopy. A number of special techniques have been offered.
One, offered by Max Levy Reprographics, uses a layer of organic fluorescent material e.g. of 3 micron thickness, having fluorescence emission across a broad wavelength spectrum, deposited on a non-fluorescent glass substrate such as synthetic quartz. A suitable pattern is then etched away into the fluorescent material, so that the critical edges of the reference are defined by the exposed edges of the fluorescing material. I realize that one shortcoming of this technology is that the minimum thickness of the fluorescent material that can be deposited is of the order of 3 micron and, with such thickness, the edges of the pattern do not etch squarely. The finest reference details that can be formed in this material are believed to be approximately 4 micron width lines, spaced apart 8 microns on center. This is unsatisfactory for calibration with respect to instruments employing conventional 5 micron spot size and is an order of magnitude greater than required to evaluate optical spots that are ½ micron in diameter, achievable with a microscope having an 0.7 NA objective in air, or ¼ micron diameter achievable with a 1.4 NA, oil immersion objective. The relatively large thickness of the fluorescent layer poses problems of edge definition, particularly because the fluorescent rays emit at acute angles to the surface and can be blocked by the edges of the material, or on the other hand, the edges themselves fluoresce, to produce confusion.
Another technique for testing a fluorescent microscope uses as a substrate a fluorescent glass on which is deposited a very thin metal layer e.g. a few hundred Angstrom thick. Preferably a nickel layer is employed. A suitable pattern is subsequently etched in the metal to create fine features, as small as ½ micron dimension. Whereas this technique does not have the foregoing edge problem, I have realized that there are shortcomings to this approach, owing to the fact that the glass constitutes a significant fluorescing volume, i.e., a substantial thickness, 1 millimeter, far exceeding the depth of field
1
, and the fluorescent radiation emitted from this volume causes focus to be difficult to define accurately and hence is an unsatisfactory standard for many purposes. Also, no presently known glass has a uniform, broad fluorescence spectrum.
1 For a spot size of 5 or 1½ micron, the depth of field is typically about 50 micron and 4.5 micron, respectively, and progressively less for smaller spots toward which the field is trending.
Yet another design, offered by Affymetrix, Inc., employs a fine-featured pattern etched in a thin metal layer, as described in the above paragraph, but the substrate is non-fluorescent quartz. The fluorescent emission is obtained from a fluid volume that bathes the pattern. I realize that this design suffers from the same shortcoming of employing a volume of fluorescing method as previously described, however, it does permit the ready use of a variety of fluorescent fluids, so that the reference may be matched to the particular study in question. Though a useful product, it comes short of offering a reliable fluorescent emission s
Hannaher Constantine
Israel Andrew
McGarrigle Phillip L.
Sherr Alan B.
Zitkovsky Ivan D.
LandOfFree
Quantified fluorescence microscopy does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quantified fluorescence microscopy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantified fluorescence microscopy will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2933708