Image analysis – Image compression or coding – Adaptive coding
Reexamination Certificate
2000-01-28
2003-07-29
Chen, Wenpeng (Department: 2624)
Image analysis
Image compression or coding
Adaptive coding
C382S240000, C358S426010
Reexamination Certificate
active
06600836
ABSTRACT:
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to image processing. More specifically, the present invention relates to a quality based compression scheme for image signals utilizing adaptively sized blocks and sub-blocks of encoded discrete cosine transform coefficient data.
II. Description of the Related Art
In the field of transmission and reception of video signals such as are used for projecting “films” or “movies”, various improvements are being made to image compression techniques. Many of the current and proposed video systems make use of digital encoding techniques. Digital encoding provides a robustness for the communications link which resists impairments such as multipath fading and jamming or signal interference, each of which could otherwise seriously degrade image quality. Furthermore, digital techniques facilitate the use signal encryption techniques, which are found useful or even necessary for governmental and many newly developing commercial broadcast applications.
High definition video is an area which benefits from improved image compression techniques. When first proposed, over-the-air transmission of high definition video (or even over-wire or fiber-optical transmission) seemed impractical due to excessive bandwidth requirements. Typical wireless, or other, transmission systems being designed did not readily accommodate enough bandwidth. However, it has been realized that compression of digital video signals may be achieved to a level that enables transmission using reasonable bandwidths. Such levels of signal compression, coupled with digital transmission of the signal, may enable a video system to transmit with less power and with greater immunity to channel impairments while occupying a more desirable and useful bandwidth.
Many compression techniques available offer significant levels of compression, but result in a degradation of the quality of the video signal. Typically, techniques for transferring compressed information require the compressed information to be transferred at a constant bit rate.
One compression technique capable of offering significant levels of compression while preserving the desired level of quality for video signals utilizes adaptively sized blocks and sub-blocks of encoded Discrete Cosine Transform (DCT) coefficient data. This technique will hereinafter be referred to as the Adaptive Block Size Discrete Cosine Transform (ABSDCT) method. This technique is disclosed in U.S. Pat. No. 5,021,891, entitled “Adaptive Block Size Image Compression Method And System,” assigned to the assignee of the present invention and incorporated herein by reference. DCT techniques are also disclosed in U.S. Pat. No. 5,107,345, entitled “Adaptive Block Size Image Compression Method And System,” assigned to the assignee of the present invention and incorporated herein by reference. Further, the use of the ABSDCT technique in combination with a Differential Quadtree Transform technique is discussed in U.S. Pat. No. 5,452,104, entitled “Adaptive Block Size Image Compression Method And System,” also assigned to the assignee of the present invention and incorporated herein by reference. The systems disclosed in these patents utilize what is referred to as “intra-frame” encoding, where each frame of image data is encoded without regard to the content of any other frame. Using the ABSDCT technique, the achievable data rate may be reduced from around 1.5 billion bits per second to approximately 50 million bits per second without discernible degradation of the image quality.
The ABSDCT technique may be used to compress either a black and white or a color image or signal representing the image. The color input signal may be in a YIQ format, with Y being the luminance, or brightness, sample, and I and Q being the chrominance, or color, samples for each 4×4 block of pixels. Other known formats such as the YUV, YC
b
C
y
or RGB formats may also be used. Because of the low spatial sensitivity of the eye to color, most research has shown that a sub-sample of the color components by a factor of four in the horizontal and vertical directions is reasonable. Accordingly, a video signal may be represented by four luminance components and two chrominance components.
Using ABSDCT, a video signal will generally be segmented into blocks of pixels for processing. For each block, the luminance and chrominance components are passed to a block interleaver. For example, a 16×16 (pixel) block may be presented to the block interleaver, which orders or organizes the image samples within each 16×16 block to produce blocks and composite sub-blocks of data for discrete cosine transform (DCT) analysis. The DCT operator is one method of converting a time and spatial sampled signal to a frequency representation of the same signal. By converting to a frequency representation, the DCT techniques have been shown to allow for very high levels of compression, as quantizers can be designed to take advantage of the frequency distribution characteristics of an image. In a preferred embodiment, one 16×16 DCT is applied to a first ordering, four 8×8 DCTs are applied to a second ordering, 16 4×4 DCTs are applied to a third ordering, and 64 2×2 DCTs are applied to a fourth ordering.
The DCT operation reduces the spatial redundancy inherent in the video source. After the DCT is performed, most of the video signal energy tends to be concentrated in a few DCT coefficients. An additional transform, the Differential Quad-Tree Transform (DQT), may be used to reduce the redundancy among the DCT coefficients.
For the 16×16 block and each sub-block, the DCT coefficient values and the DQT value (if the DQT is used) are analyzed to determine the number of bits required to encode the block or sub-block. Then, the block or the combination of sub-blocks that requires the least number of bits to encode is chosen to represent the image segment. For example, two 8×8 sub-blocks, six 4×4 sub-blocks, and eight 2×2 sub-blocks may be chosen to represent the image segment.
The chosen block or combination of sub-blocks is then properly arranged in order into a 16×16 block. The DCT/DQT coefficient values may then undergo frequency weighting, quantization, and coding (such as variable length coding) in preparation for transmission. Although the ABSDCT technique described above performs remarkably well, it is computationally intensive. Thus, compact hardware implementation of the technique may be difficult.
SUMMARY OF THE INVENTION
Alternative techniques that make hardware implementation more efficient offer certain advantages. Some systems utilize adaptively sized blocks and sub-blocks of Discrete Cosine Transform (DCT) coefficient data. Although portions of DCT based systems utilize quality as a compression parameter, other portions of the data are based on the encoding rate, as opposed to using a quality-based metric. An example of such a coding rate based paramter is the quantization step selection of the contrast based adaptive block size image compression algorithm.
The present invention is a quality based system and method of image compression that utilizes adaptively sized blocks and sub-blocks of Discrete Cosine Transform coefficient data and a quality based quantization scale factor. A block of pixel data is input to an encoder. The encoder comprises a block size assignment (BSA) element, which segments the input block of pixels for processing. The block size assignment is based on the variances of the input block and further subdivided blocks. In general, areas with larger variances are subdivided into smaller blocks, and areas with smaller variances are not be subdivided, provided the block and sub-block mean values fall into different predetermined ranges. Thus, first the variance threshold of a block is modified from its nominal value depending on its mean value, and then the variance of the block is compared with a threshold, and if the variance is greater than the threshold, then the block is subdivi
Morley Steven A.
Thyagarajan Kadayam S.
Chen Wenpeng
Minhas Sandip (Micky) S.
Ogrod Gregory
Qualcomm Incorporated
Wadsworth Philip
LandOfFree
Quality based image compression does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Quality based image compression, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quality based image compression will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082391