Pyrrole derivatives as phosphodiesterase VII inhibitors

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C548S532000, C558S395000

Reexamination Certificate

active

06737436

ABSTRACT:

The invention relates to compounds of the formula I
in which
R
1
and R
2
, independently of one another, each denote H, A, OA, SA or Hal,
R
3
denotes H or A,
R
4
denotes A or NH
2
,
R
5
denotes H, NH
2
, NHA or NA
2
,
A denotes alkyl having 1 to 10 carbon atoms, alkenyl, cycloalkyl or alkylenecycloalkyl,
Hal denotes F, Cl, Br or I,
and their physiologically acceptable salts and/or solvates, as phosphodiesterase VII inhibitors.
The invention furthermore relates to the use of the compounds of the formula I for the preparation of a medicament for combating allergic diseases, asthma, chronic bronchitis, atopical dermatitis, psoriasis and other skin diseases, inflammatory diseases, autoimmune diseases, such as, for example, rheumatoid arthritis, multiple sclerosis, Crohn's disease, diabetes mellitus or ulcerative colitis, osteoporosis, transplant rejection reactions, cachexia, tumour growth or tumour metastases, sepsis, memory disorders, atherosclerosis and AIDS.
Pyrrole derivatives of the formula I have been described, for example, by K. Gewald et al. in J. Prakt. Chem./Chem.-Ztg. (1992), 334 (6), 491-496.
The invention had the object of finding novel compounds having valuable properties, in particular those which can be used for the production of medicaments.
It has been found that the compounds of the formula I and their salts have very valuable pharmacological properties and are well tolerated.
In particular, they exhibit specific inhibition of “Rolipram insensitive” cAMP phosphodiesterase (PDE VII).
The biological activity of the compounds of the formula I can be determined by methods as described, for example, by M. A. Giembycz et al. in Br. J. Pharmacol. (1996), 118, 1945-1958.
The affinity of the compounds for cAMP phosphodiesterase (PDE VII) is determined by measuring their IC
50
values (concentration of the inhibitor that is required to achieve 50% inhibition of the enzyme activity). In order to carry out the determinations, homogenized SK-N-SH neuro-blastoma cells were used instead of T-lymphocytes, and PDE III inhibition was carried out using CI-930. This is a selective PDE III inhibitor (J. A. Bristol et al., J. Med. Chem. 1984, 27(9), 1099-1101).
Alternatively, SK-N-SH is replaced by HUT-78 and instead of using CI-930 inhibition is carried out with trequensin (D. Ruppert et al., Life Sci. 31:2037, 1982).
The compounds of the formula I can be employed for the treatment of asthmatic illnesses.
The anti-asthmatic action can be determined, for example, analogously to the method of T. Olsson, Acta allergologica 26, 438-447 (1971).
Since cAMP inhibits osteoclastic cells and stimulates osteogenetic cells (S. Kasugai et al., M 681, and K. Miyamoto, M 682, in Abstracts of the American Society for Bone and Mineral Research, 18
th
Annual Meeting, 1996), the compounds of the formula I can be employed for the treatment of osteoporosis.
The compounds also exhibit an antagonistic action to the production of TNF
&agr;
(tumour necrosis factor) and are therefore suitable for the treatment of allergic and inflammatory diseases, autoimmune diseases, such as, for example, rheumatoid arthritis, multiple sclerosis, Crohn's disease, diabetes mellitus or ulcerative colitis, transplant rejection reactions, cachexia and sepsis.
The anti-inflammatory action of the substances of the formula I and their effectiveness for the treatment of, for example, autoimmune diseases such as multiple sclerosis or rheumatoid arthritis can be determined analogously to the methods of N. Sommer et al., Nature Medicine 1, 244-248 (1995), or L. Sekut et al., Clin. Exp. Immunol. 100, 126-132 (1995).
The compounds can be employed for the treatment of cachexia. The anti-cachectic action can be tested in TNF-dependent models of cachexia (P. Costelli et al., J. Clin. Invest. 95, 2367 ff. (1995); J. M. Argiles et al., Med. Res. Rev. 17, 477 ff. (1997)).
The PDE VII inhibitors can also inhibit the growth of tumour cells and are therefore suitable for tumour therapy (for PDE IV inhibitors, cf. D. Marko et al., Cell Biochem. Biophys. 28, 75 ff. (1998)).
They can furthermore be employed for the therapy of sepsis and for the treatment of memory disorders, atherosclerosis, atopical dermatitis and AIDS, furthermore for the treatment of T cell-dependent diseases (L. Li et al., Science, 1999, 283, 848-851).
The compounds of the formula I can be employed as medicament active ingredients for PDE VII inhibition in human and veterinary medicine.
A denotes alkyl having 1-10 carbon atoms and has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms and preferably denotes methyl, ethyl or propyl, furthermore preferably isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, but also n-pentyl, neopentyl, isopentyl or hexyl. In these radicals, 1-7 H atoms may also be replaced by F and/or Cl. A therefore also denotes, for example, trifluoromethyl or pentafluoroethyl.
A also denotes cycloalkyl having 3-8 carbon atoms and preferably denotes, for example, cyclopentyl or cyclohexyl.
A also denotes alkenyl. Alkenyl has 2-10 carbon atoms, is linear or branched and denotes, for example, vinyl, propenyl or butenyl. A furthermore denotes alkylenecycloalkyl. Alkylenecycloalkyl has 4-10 carbon atoms and preferably denotes, for example, methylenecyclopentyl, ethylenecyclopentyl, methylenecyclohexyl or ethylenecyclohexyl.
R
1
and R
2
preferably each denote, independently of one another, H, methyl, ethyl, propyl, butyl, isopropyl, tert-butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, S-methyl, S-ethyl, F or Cl.
R
3
preferably denotes H, methyl or ethyl.
R
4
preferably denotes methyl, ethyl, propyl, butyl or NH
2
.
R
5
preferably denotes H, amino, methylamino, ethylamino, dimethylamino or diethylamino.
A base of the formula I can be converted into the associated acid-addition salt using an acid, for example by reaction of equivalent amounts of the base and the acid in a suitable solvent, such as ethanol, followed by evaporation. Suitable acids for this reaction are, in particular, those which give physiologically acceptable salts. Thus, it is possible to use inorganic acids, for example sulfuric acid, nitric acid, hydrohalic acids, such as hydrochloric acid or hydrobromic acid, phosphoric acids, such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, araliphatic, aromatic or heterocyclic mono- or polybasic carboxylic, sulfonic or sulfuric acids, for example formic acid, acetic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, lactic acid, tartaric acid, malic acid, citric acid, gluconic acid, ascorbic acid, nicotinic acid, isonicotinic acid, methane- or ethanesulfonic acid, ethanedisulfonic acid, 2-hydroxyethane-sulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalene- mono- and -disulfonic acids, laurylsulfuric acid. Salts with physiologically unacceptable acids, for example picrates, can be used for the isolation and/or purification of the compounds of the formula I.
The invention furthermore relates to pharmaceutical preparations comprising at least one phosphodiesterase VII inhibitor of the formula I and/or one of its physiologically acceptable salts and/or solvates for combating allergic diseases, asthma, chronic bronchitis, atopical dermatitis, psoriasis and other skin diseases, inflammatory diseases, autoimmune diseases, such as, for example, rheumatoid arthritis, multiple sclerosis, Crohn's disease, diabetes mellitus or ulcerative colitis, osteoporosis, transplant rejection reactions, cachexia, tumour growth or tumour metastases, sepsis, memory disorders, atherosclerosis and AIDS.
The substances here are generally preferably administered in doses of between about 1 and 500 mg, in particular between 5 and 100 mg, per dosage unit. The daily dose is preferably between about 0.02 and 10 mg/kg of body weight. However, the specific dose for each patient depends on a wide variety of factors, for example on the efficacy of the specific compound employed, on the age, body weight, general state

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pyrrole derivatives as phosphodiesterase VII inhibitors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pyrrole derivatives as phosphodiesterase VII inhibitors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pyrrole derivatives as phosphodiesterase VII inhibitors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3257287

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.