Pyrolytic self-cleaning oven

Electric heating – Heating devices – Combined with container – enclosure – or support for material...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S396000, C219S497000, C219S393000, C219S395000, C219S490000

Reexamination Certificate

active

06437294

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a self-cleaning domestic oven and, more particularly, to a control system for monitoring evolution of a cooking cycle and/or evolution and end of a cleaning cycle in a standard or pyrolytic oven.
The invention relates also to the use of an integrated sensor, placed in exhaust gas passage or into the cavity of the oven.
2. Description of the Related Art
It is known in the art to control a pyrolytic self-cleaning oven cycle by detecting the temperature by means of temperature sensing elements or probes disposed in the cavity of the oven. U.S. Pat. No. 4,852,544 discloses one of these known methods in which the probes are resistance temperature detectors using platinum probe elements exhibiting positive temperature coefficients. '544 discloses the use of a digital control system for receiving voltage input signals from the temperature sensors and for providing digital pulses or signals to the microprocessor of the control system.
With these known methods, which are based on a sensor that evaluates electrical conductivity of a probe element, the control system can control the cooking and/or self cleaning cycle on temperature data only, without any real feedback signal as far as the cooking process or pyrolytic self-cleaning process are concerned. In the self-cleaning process the control system can only fix temperature and time limit without any input in term of actual development of self-cleaning process. As a result, current ovens having a self-cleaning function maintain the oven cavity at high temperatures for a longer time than the real needed time, with obvious drawbacks in term of energy. saving and enamel life.
GB 2,325,299 discloses a pyrolytic self-cleaning oven having a sensor arranged to sense temperature in the vicinity of the catalyst to control heating during the self-cleaning cycle, which comprises a porous plug of ceramic material coated with a catalytic precious metal layer forming an oxidation catalyst.
SUMMARY OF THE INVENTION
According to the invention, a catalyst is supported on a conductive wire, which can be in the form of a plurality of wires arranged in a net like structure or element. The conductive wire or element can be heated by connecting it to a power supply without the need of a separate heater. The catalyst has the function of a sensor as well as a catalyst in the same device which is very easy to monitor. The oven can efficiently control the cooking process and/or the self-cleaning process by evaluating, in a simple way, certain chemical reactions, typical of the environment inside the oven cavity during cooking and/or self-cleaning pyrolytic processes, that take place on the surface of the catalyst. Even if all chemical reactions that occur during cooking are not well defined, it is known that foods under cooking release partially oxidised gases. Also, it is well known that during the self-cleaning pyrolytic process the partial combustion of soil on the surfaces of oven generates carbon monoxide as one of the reaction products. By placing a catalyst having a suitable operating temperature inside the oven or in the exhaust gas passage of the oven the applicant has discovered a way to control not only the actual conditions in the pyrolytic self-cleaning process, but also the cooking process.
The catalyst can be an oxide of platinum (Pt) or palladium (Pd) on a ceramic support in the form of a coating on a conductive, preferably metallic, wire. The catalytic element may be used as a probe for measuring electrical conductivity and therefore temperature of the catalyst. Also other catalysts which are involved in the process of oxidizing carbon monoxide or other more complex gases can be used, for instance a catalyst based on silver oxide or the like. The platinum catalyst can be used for coating a conductor or a net like structure of conductors capable of withstanding temperature of more than 500° C. and with wide variation of resistivity with temperature. The material for the conductor can be selected in the group of ferritic alloys (for example FeCrAlloy), austenitic alloys (for example NiCrFe alloys, ICONEL 600 series) and ceramic alloys (for example Cermet, Molybdenum Desilicides MoSi2, Kanthal Super). The catalytic coating on the wires or of the net-shaped element can be carried out according to known methods, for instance by applying a ceramic wash coat to a metal wire or by thermal spraying the wire element with a porous ceramic layer which is surfaced enlarged and then by applying the catalytically active material to the ceramic layer.
The catalytic wire or element may be placed in the exhaust gas passage of the oven or inside the cavity of the oven.
In the case the catalyst is used in conjunction with the pyrolytic cleaning of the oven when the cavity of the oven contains a certain amount of soil, over a certain temperature soil start to modify due to Maillard reaction producing gaseous components including CO, hydrocarbons and other volatile components. Those skilled in the art will recognise the Maillard reaction as a well known nonenzymatic reaction browning of foods in the cooking process. These components typically flow out of an oven through an exhaust gas passage, and so pass through the catalyst. When the catalytic material coating on the conductors is at a sufficiently high temperature, a chemical reaction occurs that transforms CO into carbon dioxide, as well as catalytic oxidation of other components, in an exothermic reaction. As a consequence, the temperature of the catalytic material, and accordingly the temperature of the underlying conductor, increases and the resistance of the conductor changes in response to the temperature change. By monitoring this change of resistance or by monitoring power consumption if the catalyst is heated for its activation, the control system of the oven can detect a signal that is a measurement of the concentration of certain components of the exhaust gas in the passage and thus, indirectly, of the stage of the cooking or of the amount of soil remaining inside the cavity in the pyrolytic self-cleaning cycle. The change of catalyst temperature is very rapid in case of even small changes of CO concentration in the oven or in the exhaust gases. When the change of CO concentration is around 100 ppm, the catalyst temperature has a dramatic change, and this sensitiveness is the reason why a control system according to the invention is very reliable and accurate.
In the case of pyrolytic cleaning of the oven, when cavity temperature reaches the desired value (around 470° C.) and the temperature of the catalyst stabilizes at a value dependent only on the cavity ambient temperature, the cavity will be clean. Resistance to be monitored can be of one or more wires of the catalytic element. The catalytic wire or element can be of the passive type (activated only by external temperature) or active (activated by temperature generated from resistance heating due to current flowing into the wires of the element).
In a further embodiment several layers of net-shaped catalytic elements can be used in order to increase the efficiency of oxidation of CO and other exhaust gases. Moreover the use of a plurality of layers can allow controlling the temperature pattern through the catalyst, such monitoring giving useful information to the electronic controller as far as the stages of cooking or of the pyrolytic self-cleaning cycle are concerned.
In a different embodiment two sensing wires of the same length are used, one with a catalytic coating and the other without coating. In this case the difference in resistance will give an indication of the make up or components of exhaust gas present in the exhaust passage and, as a consequence, the status of cooking in the oven or of the amount of soil remaining in the cavity in a self-cleaning cycle.


REFERENCES:
patent: 2900483 (1959-08-01), Welch
patent: 3553425 (1971-01-01), Fry
patent: 3569670 (1971-03-01), Eff
patent: 3785778 (1974-01-01), Burstein et al.
patent: 3962561 (1976-06-01)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pyrolytic self-cleaning oven does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pyrolytic self-cleaning oven, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pyrolytic self-cleaning oven will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2882871

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.