Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2002-07-24
2004-05-25
Raymond, Richard L. (Department: 1624)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S269000, C544S319000
Reexamination Certificate
active
06740655
ABSTRACT:
2.0 BACKGROUND OF THE INVENTION
The 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) comprise a large class of enzymes divided into at least eleven different families which are structurally, biochemically and pharmacologically distinct from one another. The enzymes within each family are commonly referred to as isoenzymes, or isozymes. A total of more than fifteen gene products is included within this class, and further diversity results from differential splicing and post-translational processing of those gene products. The present invention is primarily concerned with the four gene products of the fourth family of PDEs, i.e., PDE4A, PDE4B, PDE4C, and PDE4D. These enzymes are collectively referred to as being isoforms or subtypes of the PDE4 isozyme family. Further below will be found a more detailed discussion of the genomic organization, molecular structure and enzymatic activity, differential splicing, transcriptional regulation and phosphorylation, distribution and expression, and selective inhibition of the PDE4 isozyme subtypes.
The PDE4s are characterized by selective, high affinity hydrolytic degradation of the second messenger cyclic nucleotide, adenosine 3′,5′-cyclic monophosphate (cAMP), and by sensitivity to inhibition by rolipram. A number of selective inhibitors of the PDE4s have been discovered in recent years, and beneficial pharmacological effects resulting from that inhibition have been shown in a variety of disease models. See, e.g., Torphy et al.,
Environ. Health Perspect
102 Suppl. 10, 79-84, 1994; Duplantier et al.,
J. Med. Chem.
39 120-125, 1996; Schneider et al.,
Pharmacol. Biochem. Behav.
50 211-217, 1995; Banner and Page,
Br. J. Pharmacol.
114 93-98, 1995; Barnette et al.,
J. Pharmacol. Exp. Ther.
273 674-679, 1995; Wright et al. “Differential in vivo and in vitro bronchorelaxant activities of CP-80633, a selective phosphodiesterase 4 inhibitor,”
Can. J. Physiol. Pharmacol.
75 1001-1008, 1997; Manabe et al. “Anti-inflammatory and bronchodilator properties of KF19514, a phosphodiesterase 4 and 1 inhibitor,”
Eur. J. Pharmacol.
332 97-107, 1997; and Ukita et al. “Novel, potent, and selective phosphodiesterase-4 inhibitors as antiasthmatic agents: synthesis and biological activities of a series of 1-pyridylnaphthalene derivatives,”
J. Med. Chem.
42 1088-1099, 1999. Accordingly, there continues to be considerable interest in the art with regard to the discovery of further selective inhibitors of PDE4s.
The present invention is also concerned with the use of selective PDE4 inhibitors for the improved therapeutic treatment of a number of inflammatory, respiratory and allergic diseases and conditions, but especially for the treatment of asthma; chronic obstructive pulmonary disease (COPD) including chronic bronchitis, emphysema, and bronchiectasis; chronic rhinitis; and chronic sinusitis. Heretofore in the art, however, the first-line therapy for treatment of asthma and other obstructive airway diseases has been the nonselective PDE inhibitor theophylline, as well as pentoxifylline and IBMX, which may be represented by Formulas (0.0.1), (0.0.2), and (0.0.3), respectively:
Theophylline, which has the PDEs as one of its biochemical targets, in addition to its well characterized bronchodilatory activity, affects the vasculature of patients with increased pulmonary artery pressure, suppresses inflammatory cell responses, and induces apoptosis of eosinophils. Theophylline's adverse events, most commonly cardiac dysrhythmias and nausea, are also mediated by PDE inhibition, however, leading to the search for more selective inhibitors of PDEs that are able to suppress both immune cell functions in vitro and allergic pulmonary inflammation in vivo, while at the same time having improved side-effect profiles. Within the airways of patients suffering from asthma and other obstructive airway diseases, PDE4 is the most important of the PDE isozymes as a target for drug discovery because of its distribution in airway smooth muscle and inflammatory cells. Several PDE4 inhibitors introduced to the art thus far have been designed to have an improved therapeutic index concerning the cardiovascular, gastrointestinal, and central nervous system side effects of the above-mentioned nonselective xanthines.
Airflow obstruction and airway inflammation are features of asthma as well as COPD. While bronchial asthma is predominantly characterized by an eosinophilic inflammation, neutrophils appear to play a major role in the pathogenesis of COPD. Thus, PDEs that are involved in smooth muscle relaxation and are also found in eosinophils as well as neutrophils probably constitute an essential element of the progress of both diseases. The PDEs involved include PDE3s as well as PDE4s, and bronchodilating inhibitors have been discovered which are selective PDE3 inhibitors and dual PDE3/4 selective inhibitors. Examples of these are milrinone, a selective PDE3 inhibitor, as well as zardaverine and benafentrine, both dual PDE3/4 selective inhibitors, which may be represented by Formulas (0.0.4), (0.0.5), and (0.0.6), respectively:
However, benafentrine results in bronchodilation only when administered by inhalation, and zardaverine produces only a modest and short-lived bronchodilation. Milrinone, a cardiotonic agent, induces short-lived bronchodilation and a slight degree of protection against induced bronchoconstriction, but has marked adverse events, e.g., tachycardia and hypotension. Unsatisfactory results have also been obtained with a weakly selective PDE4 inhibitor, tibenelast, and a selective PDE5 inhibitor, zaprinast, which may be represented by Formulas (0.0.7) and (0.0.8):
More relative success has been obtained in the art with the discovery and development of selective PDE4 inhibitors.
In vivo, PDE4 inhibitors reduce the influx of eosinophils to the lungs of allergen-challenged animals while also reducing the bronchoconstriction and elevated bronchial responsiveness occurring after allergen challenge. PDE4 inhibitors also suppress the activity of immune cells, including CD4
+
T-lymphocytes, monocytes, mast cells, and basophils; reduce pulmonary edema; inhibit excitatory nonadrenergic noncholinergic neurotransmission (eNANC); potentiate inhibitory nonadrenergic noncholinergic neurotransmission (iNANC); reduce airway smooth muscle mitogenesis; and induce bronchodilation. PDE4 inhibitors also suppress the activity of a number of inflammatory cells associated with the pathophysiology of COPD, including monocytes/macrophages, CD8
+
T-lymphocytes, and neutrophils. PDE4 inhibitors also reduce vascular smooth muscle mitogenesis and, and potentially interfere with the ability of airway epithelial cells to generate pro-inflammatory mediators. Through the release of neutral proteases and acid hydrolases from their granules, and the generation of reactive oxygen species, neutrophils contribute to the tissue destruction associated with chronic inflammation, and are further implicated in the pathology of conditions such as emphysema.
Selective PDE4 inhibitors which have been discovered thus far that provide therapeutic advantages include SB-207,499, identified as ARIFLO®, which may be represented by Formula (0.1.9):
SB-207,499, administered orally at dosages of 5, 10, and 15 mg b.i.d., has produced significant increases in trough FEV
1
(forced expiratory volume in 1 second) from placebo at week 2 of a study involving a large number of patients. Another potent, selective PDE4 inhibitor, CDP840, has shown suppression of late reactions to inhaled allergen after 9.5 days of oral administration at doses of 15 and 30 mg in a group of patients with bronchial asthma. CDP840 may be represented by Formula (0.0.9):
PDEs have also been investigated as potential therapy for obstructive lung disease, including COPD. In a large study of SB-207,499 in patients with COPD, the group of patients receiving 15 mg b.i.d. has experienced a progressive improvement in trough FEV
1
, reaching a maximum mean difference compared with placebo of 160 mL at week
Chambers Robert James
Magee Thomas Victor
Marfat Anthony
Benson Gregg C.
Pfizer Inc
Raymond Richard L.
Richardson Peter C.
Ronau Robert T.
LandOfFree
Pyrimidine carboxamides useful as inhibitors of PDE4 isozymes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pyrimidine carboxamides useful as inhibitors of PDE4 isozymes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pyrimidine carboxamides useful as inhibitors of PDE4 isozymes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3228148