Pyrazolone compounds and ophthalmic plastic lens using the same

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C351S16000R, C351S161000, C351S162000, C351S165000, C548S365400, C514S403000

Reexamination Certificate

active

06310215

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a novel pyrazolone compound, an ophthalmic plastic lens using it and a process for producing an ophthalmic plastic lens. More specifically, the present invention relates to a novel pyrazolone compound which has two functions, capability of reacting with a polymerizable monomer and capability of coloring an obtained polymer in yellow, and which is useful for coloring an ophthalmic plastic lens, an ophthalmic plastic lens using the above pyrazolone compound, particularly, an intraocular lens such as a soft intraocular lens which can be easily inserted through a small incision, and a process for efficiently producing the above ophthalmic plastic lens.
BACKGROUND ART
A crystalline lens gets colored in yellow as people get old, and the color becomes denser. When the crystalline lens so-colored in yellow is removed, no filter effect works, and there appears a phenomenon that objects look bluish. This phenomenon is called Ocyanopsian, and it is a cyanopsia-correcting intraocular lens colored in yellow that corrects the above phenomenon to bring the vision close to the normal vision. As the above cyanopsia-correcting intraocular lens, there has been used a hard lens made of polymethyl methacrylate (PMMA).
In recent years, there has been developed a small incision operating method which aims at a simple operation, a decrease in the occurrence of astigmatism after the operation and sooner recovery therefrom. A soft intraocular lens attracts attention as a lens for the above small incision operation, which soft intraocular lens is made of a silicone or acrylic material and can be inserted through a small incision in a folded state. However, no soft intraocular lens which works to correct cyanopsia has been commercially available. The reason therefor is that when a soluble or dispersible colorant for the above hard lens made of PMMA is used in a soft material, there is caused a big problem that the colorant bleeds out. The bleeding-out is a phenomenon that the internal molecular chain of a soft material undergoes intense motion due to a low glass transition temperature of the soft material so that a dissolved or dispersed colorant migrates onto a lens surface.
For overcoming the above problem, for example, there has been proposed a soft intraocular lens, in which an ultraviolet absorbent and a yellow dye are decreased in amount for controlling the elution of these (JP-A-7-24052). However, the above soft intraocular lens is not yet satisfactory.
As an ultraviolet absorbent, there is known a compound having a monomer structure which permits copolymerization with a monomer for a lens. For example, there is disclosed a reactive ultraviolet absorbent having a benzotriazole structure and having excellent copolymerizability and hydrolysis resistance (JP-A-8-311045). Further, as a reactive yellow dye, there has been disclosed an azobenzene-based yellow dye (Japanese PCT Publication No. 8-503997). The use of the above ultraviolet absorbent or yellow dye having a monomer structure is indispensable to ophthalmic lenses such as a hydrous contact lens and an oxygen-permeable hard contact lens, particularly to a soft intraocular lens.
As a reactive ultraviolet absorbent, a variety of compounds have been developed from the viewpoint of absorption spectrum, solubility, reactivity and durability. However, as a reactive yellow dye, few compounds have been developed, or no satisfactory compound is available.
For example, a compound of the formula (II) is known as a reactive yellow dye (JP-A-10-195324).
The above compound is satisfactory in view of solubility in various monomers for lenses and copolymerizability therewith. However, the above compound has problems that it has a maximum absorption of spectrum in approximately 350 to 360 nm and that its molecular extinction coefficient is relatively small. That is, the above compound is insufficient in absorption of light in a region of from 400 nm to 500 nm, which absorption is considered effective for correcting cyanopsia. Another problem is that the amount of the above compound to be used is relatively large when it is used.
In view of safety and the filter effect, there has been desired a reactive dye which exhibits a sufficient filter effect when a low concentration of it is added. This point is very important for a contact lens which is to come in contact with corneal mucosa and an intraocular lens which is to be implanted in an eye.
Under the circumstances, it is an object of the present invention to provide a novel compound which is excellent in solubility in a monomer for a lens and copolymerizability with the monomer, which undergoes no elution during extraction with various solvents, which has an excellent absorption peak in a visible light region when used in an ophthalmic plastic lens and which works sufficiently in a small amount.
It is another object of the present invention to provide an ophthalmic plastic lens, particularly an intraocular lens such as a soft intraocular lens, to which the above novel compound is applied.
Further, it is another object of the present invention to provide a process for efficiently producing the above ophthalmic plastic lens.
DISCLOSURE OF THE INVENTION
The present inventor has made diligent studies to achieve the above objects and as a result has found that a compound having a specific structure can fulfill the above objects as a reactive yellow dye. It has been also found that an ophthalmic plastic lens, particularly, an intraocular lens such as a soft intraocular lens, can be efficiently produced by providing a polymerizable material containing the above compound and a monomer for a lens, polymerizing the polymerizable material by a specific method and optionally, cutting and polishing an obtained polymerizate. On the basis of the above findings, the present invention has been completed.
That is, according to the present invention, there are provided;
(1) A pyrazolone compound having the formula (I),
 wherein X is phenyl or 4-alkylphenyl,
(2) an ophthalmic plastic lens formed by polymerizing a polymerizable material containing the pyrazolone compound of the above formula (I) and a monomer for lens, preferably, an intraocular lens comprising an optic portion including an essential portion formed of the pyrazolone compound of the above formula (I), particularly preferably a soft intraocular lens,
(3) a process for the production of an ophthalmic plastic lens, which comprises casting a polymerizable material containing the pyrazolone compound of the above formula (I) and a monomer for a lens into a predetermined mold and polymerizing the polymerizable material, and
(4) a process for the production of an ophthalmic plastic lens, which comprises casting a polymerizable material containing the pyrazolone compound of the formula (I) and a monomer for a lens into a central hollow portion of a hard polymer material shaped in the form of a doughnut, polymerizing the polymerizable material and then cutting and polishing a polymerizate integrated with said hard polymer material, to form a hard haptic portion and a soft optic portion.


REFERENCES:
patent: 4440852 (1984-04-01), Onishi et al.
patent: 4833246 (1989-05-01), Adachi et al.
patent: 6197226 (2001-03-01), Amagni et al.
patent: 6224945 (2001-04-01), Calderara
patent: 03208043 (1991-11-01), None
patent: 7-24052 (1995-01-01), None
patent: 8-311045 (1996-11-01), None
patent: 10-195324 (1998-07-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pyrazolone compounds and ophthalmic plastic lens using the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pyrazolone compounds and ophthalmic plastic lens using the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pyrazolone compounds and ophthalmic plastic lens using the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2554760

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.