PWM-based measurement interface for a micro-machined...

Coded data generation or conversion – Analog to or from digital conversion – Digital to analog conversion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C341S148000, C073S514070

Reexamination Certificate

active

06674383

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to microelectromechanical system (MEMS) devices. More particularly, it relates to actuating and measuring the motion of a micro-machined electrostatic actuator.
BACKGROUND OF THE INVENTION
Prior methods for capacitive position sensing of MEMS devices have been focused towards inertial sensors such as accelerometers and gyroscopes. These earlier techniques were subject to the following disadvantages:
1. Sensitivity to low-frequency amplifier noise, such as voltage offset and 1/f noise.
2. Sensitivity to capacitive “feed-through” of the drive signal into the measurement signal. Many prior art MEMS drive systems apply a small AC signal on top of a DC drive voltage. The AC signal is used to measure the capacitance of the MEMS device. Variations of the DC signal can be picked up by the capacitance sensing circuitry. Such pick-up is known as feed-through and is a form of noise. This noise may be significant since prior art capacitive sensing systems provide only a small amount of current for capacitive sensing.
3. Non-linear actuation force.
4. Analog interface. An analog interface adds to the complexity of the control circuitry.
SUMMARY OF THE INVENTION
The disadvantages associated with the prior art are overcome by embodiments of the present invention directed to methods and apparatus for varying and measuring the position of a micromachined electrostatic actuator using a pulse width modulated (PWM) pulse train. According to a method for varying the position of the actuator, one or more voltage pulses are applied to the actuator. In each of the pulses, a voltage changes from a first state to a second state and remains in the second state for a time &Dgr;t
pulse
before returning to the first state. The position of the actuator may be varied by varying the time &Dgr;t
pulse
. A position of the actuator may be determined by measuring a capacitance of the actuator when the voltage changes state, whether the time t is varied or not.
An apparatus for varying the position of a MEMS device may include a pulse width modulation generator coupled to the MEMS device an integrator coupled to the MEMS device and an analog-to-digital converter coupled to the integrator. The integrator may measure a charge transferred during a transition of a pulse from the pulse generator. The integrator may comprise an amplifier, an integrator capacitor, a hold capacitor, a compensation voltage generator and three switches. The hold capacitor and integrator capacitor may be coupled to a MEMS device. The integrator capacitor, hold capacitor, and compensation voltage generator may be selectively coupled to the amplifier by two of the switches. The MEMS device and hold capacitor may be selectively coupled to ground by a third switch.
Embodiments of the present invention that use a switching integration technique are relatively insensitive to noise sources that have been problematic in the prior art.
Embodiments of the present invention use time-multiplexing to separate the measurement period from the driving period, eliminating cross-talk between the drive and measurement signals.
Because embodiments of the present invention use a constant amplitude PWM pulse train, they are not subject to the quadratic voltage to force non-linearity found in typical electrostatic actuation techniques.
Embodiments of the present invention use an entirely digital interface, rendering them compatible with modern digital feedback control systems.


REFERENCES:
patent: 5852242 (1998-12-01), Devolk et al.
patent: 5867302 (1999-02-01), Fleming
patent: 6137941 (2000-10-01), Robinson
patent: 6296779 (2001-10-01), Clark et al.
patent: 6386032 (2002-05-01), Lemkin et al.
patent: 0683414 (1995-11-01), None
Fedder et al.,Multimode Digital Control of a Suspended Polysilicon Microstructure, IEEE Journal of Microelectromechanical Systems, vol. 5, No. 4, Dec. 1996, pp. 283-297.*
Cheung et al.,Design, Fabrication, Position Sensing, and Control of an Electrostatically-driven Polysilicon Microactuator, IEEE Transaction of Magnetics, vol. 32, No. 1 Jan. 1996, pp. 122128.*
Yun et al.,Surface Micromachined, Digitally force-Balanced Accelerometer with Integrated CMOS Detection Circuitry, Tech. Digest IEEE Solid-State Sensor and Actuator Workshop, Jun. 1992 pp. 126-131.*
S. Suzuki, K. Sato, S. Ueno, M. Sato, M. Esashi, “Semiconductor Capacitance-Type Accelerometer with PWM Electrostatic Servo Technique,” Sensors and Actuators, A21-A23 (1990) pp. 316-319.
B. E. Boser, “Electronics for Micromachined Inertial Sensors”, Transducers '97, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, Jun. 16-19, 1997.
E. K. Chan, K. Garikipati, R. W. Dutton, “Characterization of Contact Electromechanics Through Capacitance—Voltage Measurements and Simulations,” Journal of Microelectromechanical Systems, vol. 8, No. 2, Jun. 1999.
C. T. Nguyen, “Micromechanical Signal Processors,” Doctoral Dissertation, UC Berkeley, Dec., 1994.
L. Y. Lin, E. L. Goldstein, R. W. Tkach, Free-Space Micromachined Optical Switches with Submillisecond Switching Time for Large Scale Optical Cross-Connects, IEEE Ptotonics Technology Letters, vol. 10, No. 4, Apr. 1998.
H. Toshioshi, H. Fujita, “Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix,” Journal of Microelectromechanical Systems, vol. 5, No. 4, Dec. 1996.
A. Selvakumar, K. Najafi, “A High Sensitivity Z-Axis Capacitive Silicon Microacceleraometer with a Torsional Suspension,” Journal of Microelectromechanical Systems, vol. 7, No. 2, Jun. 1998.
P. Cheung, R. Horowitz, R. T. Howe, “Design, Fabrication, Position Sensing, and Control of an Electrostatically-driven Polysilicon Microactuator,” IEEE Transactions on Magnetics, vol. 32, No. 1, Jan. 1996.
M. Oda, M. Shirashi, “Mechanically Operated Optical Matrix Switch,” Fujitsu Scientific and Technical Journal, Sep., 1981.
E. K. Chan, R. W. Dutton, “Electrostatic Micromechanical Actuator with Extended Range of Travel,” Journal of Microelectromechanical Systems, vol.: 9 Issue: 3, Sep. 1000 pp. 321-328.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

PWM-based measurement interface for a micro-machined... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with PWM-based measurement interface for a micro-machined..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and PWM-based measurement interface for a micro-machined... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3228256

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.