Pusher, puller loader, unloader, and working device

Material or article handling – Device for emptying portable receptacle – Nongravity type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S468900, C198S747000

Reexamination Certificate

active

06692214

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a pusher and a puller, and a loader, an unloader, and a working apparatus having the pusher and the puller, which are suitable, for example, for handling circuit boards in operations in which semiconductor devices are installed on the circuit boards for manufacture of electronic circuit boards.
BACKGROUND ART
A number and types of components such as large and small connectors and electronic components that are mounted on an electronic circuit board have been increasing with diversification of functions of electronic equipment and increase in variety of electronic components. This involves advancement of techniques for microminiaturization and high-density mounting of electronic components and, on the other hand, involves use of large electronic circuit boards.
For example, a component mounting machine (b) for producing electronic circuit boards (a) as shown in
FIG. 33
employs a loader (d) that pushes out circuit boards (c) from storage cassettes (f) to feed the boards to the component mounting machine (b) and an unloader (g) that pulls into storage cassettes (f) and stores electronic circuit boards (a) produced from circuit boards (c) mounted with electronic components (e) in the component mounting machine (b).
As shown in
FIGS. 34 and 35
, the loader (d) and the unloader (g) rectilinearly reciprocate a pushing member (j) or a pull piece (k) by an actuator, such as a screw shaft (h) and timing belt (i), that is reciprocated rectilinearly, and thereby load a circuit board (c) into the component mounting machine (b) or unload an electronic circuit board (a).
DISCLOSURE OF INVENTION
Both the storage cassettes (f) on the loader (d) from which the circuit boards (c) are pushed out and the storage cassettes (f) on the unloader (g) into which the electronic circuit boards (a) are pulled have a plurality of steps for receiving a circuit board (c) or an electronic circuit board (a) in each. The storage cassettes (f) are intermittently moved up and down by lifting and lowering mechanism not shown, so as to have the steps positioned sequentially at a specified height, in order that the circuit boards (c) may sequentially be pushed out from the steps or the electronic circuit boards (a) may sequentially be pulled into the steps.
As shown in
FIG. 36
, it is necessary for the pushing member (j) of the loader (d) to advance into a storage cassette (f) from a shelter position that is out of a lifting and lowering area (m) for the storage cassette (f), to push a circuit board (c) stored in the storage cassette (f), and to push out the board to an ulterior position that is out of the lifting and lowering area (m) for the storage cassette (f). As shown in
FIG. 37
, it is necessary for the pull piece (k) of the unloader (g) to pull an electronic circuit board (a) in a shelter position that is out of a lifting and lowering area (m) for a storage cassette (f), into the storage cassette (f) that is in the lifting and lowering area (m).
For this purpose, as shown in
FIGS. 34
to
37
, the loader (d) and the unloader (g) partially project far from lifting and lowering areas (m) for the storage cassettes (f) by a size (t) that is a sum of a size (S) in a direction in which a circuit board (c) or an electronic circuit board (a) is pushed or pulled and of an auxiliary space including a safety space for interference prevention and a supporting space for the pushing member (j) or the pull piece (k).
Movable parts that project partially and greatly in this manner are prone to encumber workers and surroundings and to make trouble. With such a great projection, a size of the loader (d) or the unloader (g) in a direction in which a circuit board (c) or an electronic circuit board (a) is moved is as large as on the order of 2.5 times that of the circuit board (c) or the electronic circuit board (a) that are to be handled, and therefore the sizes of the loader (d) and the unloader (g) for boards having a size of 200 mm are as large as on the order of 500 mm. A space to be occupied for installation of such a loader or such an unloader in combination with the component mounting machine (b) has to be so large that nowaday demand for space saving cannot be satisfied.
Where the component mounting machine (b) handles and mounts flip chip semiconductor devices, particularly, simplification of a geometry of junction between semiconductor devices and a circuit board, simplification of operations, and reduction in distance for the junction can be achieved by such a mounting method that bumps provided on electrodes on a semiconductor wafer are directly joined to electrodes on a circuit board (c), or the like. Such mounting operations, however, have to be performed in a clean room, and a monthly running cost required for light and fuel in a clean room having an area of 600 m
2
, for example, is supposed to reach thirty million yen. In this case, therefore, such great projections on the loader (d) and the unloader (g) as described above are particularly problematic.
An object of the present invention is to provide a pusher and a puller which allow quantities of projection of a pushing mechanism and a pulling mechanism in directions of push and pull to be smaller than quantities of push and pull and which are suitable for space saving, and to provide a loader, an unloader, and a working apparatus having the pusher and the puller.
A first aspect of the invention provides a pusher for pushing an object from a first position to a second position, the pusher comprising: a leaf spring, a driving section for nipping the leaf spring to advance and retract it in a longitudinal direction so that advancement of a fore end portion of the leaf spring in a pushing direction causes the object facing the fore end portion of the leaf spring to be pushed from the first position to the second position, a direction changing section for bending a side of a tail end portion of the leaf spring being advanced and retracted relative to a side of the fore end portion extending in the pushing direction so as to change directions of advancement and retraction of the leaf spring at the direction changing section, and guides for guiding the side of the fore end portion and the side of the tail end portion of the leaf spring with respect to the direction changing section in the directions of advancement and retraction.
In such a configuration, the leaf spring exhibits a high flexural rigidity and an excellent rectilinearity because of its thickness, thickness distribution along a direction of a width thereof, shape of curve or bend with respect to the direction of the width, and the like, drive for advancement and retraction by the driving section is efficiently transmitted to the fore end portion directly or through the guides, the direction changing section, and the like, the facing object is pushed away without escape even though the fore end portion is in a released status in which the fore end portion protrudes from a guide on the side of the fore end portion when being advanced, and consequently, the leaf spring is capable of reliably pushing by a specified quantity the object to be pushed that is ahead of an initial push position on condition that the leaf spring is guided to immediate front of the initial push position. Besides, the direction changing section in middle of the leaf spring changes the direction of advancement and retraction of the spring from the pushing direction by bending the side of the tail end portion relative to the side of the fore end portion, and therefore a partial projection of the side of the tail end portion of the leaf spring, the guide for that side, and the like that is backward with respect to the pushing direction can be avoided, so that the problems with the partial projection are resolved. Moreover, a length from the direction changing section to the immediate front of the initial push position has only to be set in a range that narrowly satisfies a guiding function the guide on the side of the fore end portion performs by itself or in cooperation with the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pusher, puller loader, unloader, and working device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pusher, puller loader, unloader, and working device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pusher, puller loader, unloader, and working device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3352947

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.