Push rod activated grease nozzle

Lubrication – Lubricators – Force feed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C184S105200, C251S063600, C239S423000, C239S584000

Reexamination Certificate

active

06276492

ABSTRACT:

FIELD OF INVENTION
The present invention relates, in general, to a lubrication system used to lubricate the flanges of the wheels of a railroad locomotive and, more particularly, the present invention relates to a flange lubricator nozzle assembly.
BACKGROUND OF THE INVENTION
Wheel treads are designed to adhere to the running surface (top) of the rails of a railway track essentially by means of friction. It is this friction between the treads and the top of the rails that allows the wheels to gain traction on the rails as the wheels rotate and thereby propel the train along the tracks. A wheel flange is that tapered projection that extends completely around the inner portion of the rim of a wheel. The wheel flanges are designed to keep the wheels or wheelsets on the railway track by limiting lateral movement of the wheels or wheelsets against the inside surface of either rail.
Due to their contact with the railway track, the wheels of a locomotive suffer wear over time, particularly on their treads and to a lesser extent on their flanges. The treads, of course wear as a result of their direct contact against the top of the rail. During braking the treads may suffer wear more severely if the wheels should happen to slip or lockup as they slide along the rail. The wheel flanges suffer wear due to their contact with the inside surfaces of the rails. This is particularly pronounced as the trains negotiate curves in a railway track. On such curves the flange portion of the wheel makes very firm contact with inside surface of the rails.
Wheel lubrication systems are one of the many systems that the railroad industry uses to prolong the useful life of a railroad wheel. Such wheel lubrication systems are used to lubricate the flange of the wheels of a railroad locomotive. These flange lubrication systems include both wayside lubricators and on-board lubricators.
In these systems nozzles have, through the years, proven to be the least reliable component of the wheel flange lubrication system. Some prior art nozzles have employed a steel ball as a check valve internally to prevent or permit the delivery of a dose of lubricant. When the spray solenoid is deenergized, the ball valve is biased to a closed position in which the pressurized lubricant is blocked from exiting the nozzle. When the solenoid is energized the force of air moves the ball valve to an open position and allows the lubricant to flow out of the nozzle and onto the wheel flange.
These prior art nozzles have not fared well in the railroad environment where they are intended to be used. Dirt, dust and other debris can work their way into the nozzle and after a while impede the movement of the internal ball valve. In many of these instances the ball valve would tend to stick in a closed position regardless of the state of the solenoid. When this occurs lubricant is not expelled from the nozzle because the grease path is blocked by the ball valve.
SUMMARY OF THE INVENTION
The present invention provides an assembly for dispensing lubricant. The assembly comprises a housing member, a cavity formed in the housing member and a nozzle member connected to the housing member. There is an exhaust passage formed within the nozzle member that is in fluid communication with such cavity. The housing further includes a lubricant passage connectable to a source of lubricant under pressure and a fluid pressure inlet passage connectable to a source of fluid pressure. The fluid pressure inlet passage is in fluid communication with at least a portion of the cavity.
There is also a piston member having a predetermined configuration disposed in the cavity for reciprocal movement. The piston member having a first side adjacent the fluid pressure inlet passage and a radially opposed second side. There is a piston cavity formed in the first side of the piston member. A first sealing means is disposed around the piston member intermediate the first side and the radially opposed second side. Such first sealing means is in sealing engagement with a wall of the cavity for both dividing the cavity into a first cavity portion in fluid communication with the fluid pressure inlet passage and a second cavity portion and preventing fluid communication between the fluid pressure inlet passage and the second cavity portion.
The assembly further includes a first bore extending longitudinally through the piston member. Such first bore is in fluid communication with the lubricant passage and with the piston cavity. There is a second sealing means disposed closely adjacent an end of the second side of the piston member for preventing leakage between the lubricant passage and the second cavity portion.
The assembly includes a first urging means disposed in the second cavity portion of the cavity and caged between an end wall of the second cavity portion and a portion of the second side of the piston member facing the end wall for biasing such piston member into a closed position. A valve means is disposed in the piston cavity. Such valve means is in contact with a first end of the piston bore for controlling the passage of lubricant.
There is a retainer member having a second predetermined configuration. A portion of a first side of such retainer member is connected to the first side of the piston member. A portion of such first side of such retainer member is disposed within the piston cavity and a portion of a second side extends into such exhaust passage of such nozzle member. The retainer member is also disposed for reciprocal movement. There is a second bore extending longitudinally through the retainer member and in fluid communication with such piston cavity and is also in fluid communication with such exhaust passage in the nozzle member. The second bore is further in fluid communication with the first bore when the piston member is in a discharge position.
A second urging means is disposed in the piston cavity and caged between a wall of such retainer member facing such first end of such first bore and the valve means. The second urging means exerts pressure on the valve means and forces the valve means against the first bore thereby preventing such lubricant in the first bore from passing through to the piston cavity and to the second bore while the piston member is in a closed position.
A push rod is disposed within the first bore. Such push rod extends a predetermined distance beyond an end of the second side of the piston member. There is a predetermined clearance between an outer surface of the push rod and an inner surface of the first bore. One end of the push rod contacts the valve means.
The piston member and the retainer member are slidingly movable against the first urging means from a closed position to a discharge position when such source of fluid pressure is introduced into the first cavity portion of the cavity permitting such fluid pressure to act upon the retainer member and the piston member such that the retainer member and the piston member are moved compressing the first urging means while the second urging means continues to exert pressure on the valve means thereby moving the valve means and the push rod until the push rod contacts resistance. The piston member and the retainer member continue to move for such predetermined distance until the end of the second side of the piston member also contacts resistance. The push rod prevents the valve means from contacting the first bore thereby permitting such lubricant in the first bore to be in fluid communication with the piston cavity and the second bore and such lubricant from the second bore being mixed with such fluid pressure in the exhaust passage is forced through the exhaust passage and expelled out of the nozzle member.
OBJECTS OF THE INVENTION
It is, therefore, a primary object of the present invention to provide a nozzle assembly that will reliably dispense a metered amount of lubricant onto the flange of the wheel of a railroad locomotive.
Additionally, it is an object of the invention to provide a nozzle assembly that will have a positive actuation and release of the ball

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Push rod activated grease nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Push rod activated grease nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Push rod activated grease nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487223

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.