Pupilometer with pupil irregularity detection capability

Optics: eye examining – vision testing and correcting – Eye examining or testing instrument – Objective type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06260968

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to pupilometry systems and, more particularly, to pupilometry systems having a pupil irregularity detection capability. In one particularly innovative aspect, the present invention relates to hand-held pupilometry systems having a pupil irregularity detection capability, to methods and processing sequences used within such systems, and to methods of using such systems.
In another innovative aspect, the present invention relates to a medical diagnostics system incorporating a pupilometer and medical database for correlating actual or derived pupilary image analysis data with stored medical data to formulate medical diagnoses, and to methods of implementing and utilizing such a diagnostics system.
BACKGROUND OF THE INVENTION
Systems for monitoring pupil size and pupil responsiveness characteristics are well known in the art and are generally referred to as pupilometry systems or, simply, pupilometers. One early pupilometer is described in U.S. Pat. No. 3,533,683, which issued to Stark et al. on Oct. 13, 1970 and is entitled “Dynamic Pupilometers Using Television Camera System.” The Stark et al. system employed a television camera system, a digital computer system, an infrared light source, and a visual light stimulator for determining the instantaneous size of a pupil as an eye (or neurologic pupilary control system) of a patient was exposed to various stimuli. Like the early Stark et al. system, conventional pupilometers measure, for example, the diameter of a pupil before and after the pupil is exposed to a light stimulus pulse and also measure the rates at which the pupil may constrict and dilate in response to the initiation and termination of the light stimulus pulse. Pupilometers may comprise hand-held units or, alternatively, may comprise desk or table-mounted, stand-alone units. Pupilometers also generally include some mechanism for ensuring that an imager within the pupilometer is properly positioned in relation to a pupil to be imaged. For example, U.S. Pat. No. 5,646,709, issued to Elbert P. Carter, describes an electronic centering system for ensuring that a pupilometer is properly positioned in relation to a pupil to be imaged. Similarly, U.S. Pat. No. 5,187,506, issued to Elbert P. Carter, describes an eye orbit housing for ensuring proper positioning between a pupilometer and an eye of a subject prior to the initiation of a pupilary scanning procedure.
Those skilled in the art will appreciate, however, that for a pupilometer to have maximum utility maximum flexibility should be provided for positioning the imager. For example, in the case of a hand-held system few, if any, restrictions should be placed upon the orientation of the imager prior to enabling an imaging function. The reason for this is that medical personnel at, for example, an accident site may have difficulty in positioning an imager in a prescribed position for acquiring pupilary response data. Thus, it is believed that, for hand-held units in particular, a need exists within the pupilometer field for improved data acquisition and processing systems and methods, as such systems and methods may substantially reduce system dependence on imager orientation and may allow pupilometers to become more user friendly.
Similarly, those skilled in the art will appreciate that a need exists for pupilometers that are capable of evaluating more than a mere pupilary response to light stimulus pulses. For example, it is believed that a substantial need exists for a pupilometer that is capable not only of measuring changes in pupilary diameter in response to one or morelight stimulus pulses, but also of evaluating pupil shape and/or segmental responses to a visual stimulus. Stated somewhat differently, it is believed that a substantial need exists for a pupilometer having a pupilary shape irregularity or non-uniformity detection capability.
Finally, it is believed that a substantial need exists for pupilometer-based diagnostics systems, as such systems may provide medical practitioners with a cost effective, non-invasive means for gathering and assessing numerous physiologic parameters.
SUMMARY OF THE INVENTION
In one particularly innovative aspect, the present invention is directed toward a pupilometer having a pupil shape irregularity detection capability. For example, a pupilometer in accordance with the present invention may comprise an imaging sensor for generating signals representative of a pupil of an eye, a data processor coupled to the imaging sensor, and a program executable by the data processor for enabling the data processor to process signals received from the imaging sensor and to thereby identify one or more regions of non-uniformity or irregularity within an image of a perimeter of the imaged pupil.
In one presently preferred embodiment, the one or more regions of pupilary non-uniformity or irregularity are identified by identifying a center point of a pupil and determining a plurality of radii representing distances from the center point to the perimeter of the pupil along a respective plurality of angles in a R,&thgr; coordinate system.
In another innovative aspect, the present invention is directed to a medical diagnostics system incorporating a pupilometer and medical database for correlating actual or derived pupilary image analysis data with stored medical data to formulate medical diagnoses, and to methods of implementing and utilizing such a diagnostics system.
In still other innovative aspects, the present invention is directed to improved thresholding and image data processing algorithms for use within a pupilometer. For example, a pupilometer in accordance with the present invention may utilize a plurality of row and column histogram data sets in an iterative fashion to identify a preferred threshold value for locating the pupil of an eye within an image data frame.
A pupilometer in accordance with the present invention also may process image frame data to determine a shape and/or diameter of the sclera/iris border of an eye and, thereafter, use the determined shape or diameter to evaluate an orientation of the eye of the patient and/or to correlate measured units with defined units of measurement.
Finally, when provided with an additional armature supporting, for example, a visible light emitting diode (LED), a pupilometer in accordance with the present invention may be used to measure afferent or consensual pupilary responses to visual stimulus pulses. In such embodiments, a visual stimulus is applied to an eye under examination, and the response of the monitored pupil is recorded and evaluated. Then, as the monitored pupil is allowed to dilate, a stimulus pulse is applied to the other eye of the patient, to see whether or not the monitored pupil again constricts. Following the second stimulus pulse, the monitored pupil is allowed again to dilate, and a final visual stimulus is applied to the eye under examination. During the final stimulus pulse, the constrictive response of the monitored pupil (or lack thereof) is again measured. By measuring the response of the monitored pupil to each stimulus pulse, it is possible to detect retinal impairment in each eye of the patient.
Other objects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.


REFERENCES:
patent: Re. 28873 (1976-06-01), Morgan
patent: 3533683 (1970-10-01), Stark et al.
patent: 3533684 (1970-10-01), Stark et al.
patent: 3638640 (1972-02-01), Shaw
patent: 4157864 (1979-06-01), Koller et al.
patent: 4194815 (1980-03-01), Trombley
patent: 4410245 (1983-10-01), Koester
patent: 4485820 (1984-12-01), Flower
patent: 4649908 (1987-03-01), Ghaly
patent: 4652099 (1987-03-01), Lichtman
patent: 4664490 (1987-05-01), Rol
patent: 4755043 (1988-07-01), Carter
patent: 4863260 (1989-09-01), Gersten et al.
patent: 4871247 (1989-10-01), Haynes
patent: 4907597 (1990-03-01), Chamoun
patent: 4907872 (1990-03-01), Schirmer et al.
patent: 4966452 (1990-10-01), Shields et al.
pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pupilometer with pupil irregularity detection capability does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pupilometer with pupil irregularity detection capability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pupilometer with pupil irregularity detection capability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2490990

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.