Pumping station with efficiency increasing and backflow...

Fluid handling – Systems – With pump

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S565230, C137S565330, C137S573000, C137S574000, C137S576000, C052S021000

Reexamination Certificate

active

06681801

ABSTRACT:

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of international patent application no. PCT/EP01/07923, filed Jul. 10, 2001, designating the United States of America and published in German as WO 02/06596, the entire disclosure of which is incorporated herein by reference. Priority is claimed based on Federal Republic of Germany patent application no. DE 100 34 174.8, filed Jul. 14, 2000.
BACKGROUND OF THE INVENTION
The present invention relates to a pumping station comprising a structure which has at least one inlet chamber and at least one discharge chamber which is arranged at a different height, a partition arranged within the structure between these at least two chambers, at least one pump delivering a liquid through the partition into a discharge chamber of the structure, the discharge chamber having a discharge opening which is arranged at an angle to an outlet opening, wherein the upper edge of the discharge opening is situated below a liquid level which prevails in a discharge arranged downstream of the structure.
Pumping stations, which are also referred to as water intake installations, dike or discharging intake installations, water lifting installations, irrigation pumping installations or under similar terms, have to deliver large amounts of water with small delivery heads. A general overview of systems of this type is disclosed by the essay entitled “Gestaltung von Schöpfwerken [Design of water intake installations]”, by Helmut Göhrke and Paul Winkelmann, published in KSB Technical Reports No. 11, August 1966, pages 28-36. With changing levels on the inlet side and with fluctuations in the external water levels arranged downstream of the pumping station, pumping stations have to cope with different delivery heads. Since the pumps which are in use, which are essentially of axial or semiaxial design, discharge only relatively small delivery heads, the slight fluctuations in the delivery head, which fluctuations are required for efficient operation of the system, are a problem for the design of pumping stations of this type.
In order to keep the costs of a structure of this type low, vertical impeller pumps are predominantly used. For small delivery heads of up to approximately 2 meters the abovementioned essay has disclosed the use of what is referred to as an open impeller pump. In this case, a liquid which is to be delivered, after having passed the impeller, flows directly out of the pump housing, which is designed to be open on the delivery side, into the discharge chamber of the pumping station. As in the case of all pumping stations having the aforementioned intended use, a back flow preventing mechanism has to be arranged on the delivery side of the pump and is used, when the pump is switched off, to prevent backflows of liquid which has already been delivered. For this purpose, in known pumping stations, the discharge opening of the discharge chamber is fitted with a positively controlled non-return flap which serves simultaneously as back flow preventer and a shut-off element, cf. page 31, FIG.
3
A.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a pumping station which ensures reliable and energy efficient operation.
A further object of the invention is to provide a pumping station which can be constructed with comparatively low expenditures for equipment and structure.
These and other objects are achieved in accordance with the present invention by providing a pumping station comprising a structure which includes at least one inlet chamber and at least one discharge chamber for a liquid which is to be conveyed, the discharge chamber being arranged at a different height from the inlet chamber, a separating wall within the structure between the inlet and discharge chambers, and at least one pump for delivering a liquid through the separating wall into the discharge chamber, the discharge chamber having a discharge opening which is arranged at an angle to an open outlet opening of the pump, the discharge opening having an upper edge situated below a liquid level which prevails in a discharge arranged downstream of the structure, wherein the pump is provided with an upwardly directed, liquid-conducting device leading to the pump outlet opening, and the outlet opening is arranged in the discharge chamber above the upper edge of the discharge opening.
In the present invention, each pump is provided with a liquid-conducting device which extends in an upward direction and has an open outlet opening which is arranged in the discharge chamber above the upper edge of the discharge opening.
This solution means that an additional installation of a shut-off flap can be omitted. And, the device which conducts liquid in an upward direction can be a pipe, channel, a tube or a similar construction designed as part of the structure. The saving which is possible as a result on a hitherto necessary shut-off flap increases the operational reliability considerably with a simultaneous reduction in the investment costs. This is because shut-off flaps of this type constitute a maintenance-intensive and fault-prone component as a consequence of the control necessary for their operation and the moving components which are frequently underwater.
One refinement of the invention makes provision for the upper edge of the discharge opening to be part of an adjustable opening. Therefore, in the development of a standardized structure for a pumping station, adaptation of the structure to the respective maximum and minimum levels on the discharge side of the pumping station can take place in a very simple manner by means of a simple matching of the upper edge of the discharge opening to the height of the outlet opening, which is designed to be open, of the liquid-conducting device. In the planning or production of the pumping station, adaptation to the predetermined levels of the inlet and discharge channels situated outside the structure can take place by simply varying a framework defining the upper edge of the discharge opening. The upper edge may also be part of a height-adjustable device or of a device which can be adjusted during operation.
Another refinement of the invention makes provision for a delivered flow measuring device to be arranged in the liquid-conducting device and/or in the region of the discharge opening. Also, according to a further refinement of the invention, a discharge channel, a pipe or the like, running predominantly horizontally and having a delivered flow measuring device arranged in it can be arranged downstream of the discharge opening. A delivered flow measuring device of this type enables a pump station to be monitored in a very simple manner to such an extent that it can even be remotely diagnosed and/or remotely maintained. With the aid of a delivered flow signal, which can be transmitted in various known ways, it is possible to ascertain whether the pumping station is operating correctly.
In order to reduce the cost of measuring devices for measuring the delivered flow, provision is made for a cross section which is used for measuring the delivered flow and through which the flow passes or a volume region through which the flow passes to be completely filled with the delivered liquid. For this purpose, a highest point of a measured-value detection region of this type, which is generally arranged in part of the flow path on the delivery side, lies below the lowest water level on the discharge side. The continuous and complete filling of such a measuring section can be achieved by means of its local lower positioning or by means of an overflow threshold arranged at the end thereof. The cross section which is used for the measuring and through which the flow passes should always be below the lowest level on the discharge side on which a design of a pumping station of this type is based. The arrangement of a type of overflow threshold at the end of a measured section of this type enables the structural outlay in the case of excavation works to be reduced. Fluctuations in the height on the dischar

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pumping station with efficiency increasing and backflow... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pumping station with efficiency increasing and backflow..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pumping station with efficiency increasing and backflow... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3230620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.