Pump-ejector compression unit and variants

Pumps – One fluid pumped by contact or entrainment with another – Jet pump with motive fluid generating pump

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S105000, C417S173000, C417S182500, C062S116000, C062S191000, C062S500000

Reexamination Certificate

active

06334758

ABSTRACT:

This application is a 371 of International application PCT/IB99/00678 filed Apr. 16, 1999 (not published in English) which is based upon RU 98107180.
BACKGROUND ART
The invention relates to the field of jet technology, primarily to self-contained units for gas compression, mostly for compression of air.
A pump-ejector compression unit is known, which includes a pump, a separator and a jet apparatus. In this unit water is fed into the jet apparatus by the pump, falls down by gravity, thus entrains air into the apparatus and compresses it. Then the air is separated from the water in the separator. The compressed air from the separator is delivered to consumers and the water is fed back into the jet apparatus by the pump (see SU patent, 1955, MPK 6 F04 F 5/12, 30.11.1926).
The main imperfection of this compression unit is the complete dependence of the available compression ratio on the elevation of the jet apparatus over the separator. That is why in some cases dimensions of such units exceed reasonable limits and the specific material consumption during their manufacture is too high.
The closest analogue of the unit described in the present invention is a pump-ejector compression unit including a pump, a separator and a liquid-gas ejector composed of a receiving chamber, a nozzle and a mixing chamber. The liquid-gas ejector is connected through its outlet to the separator, the suction side of the pump is connected to the separator, the discharge side of the pump is connected to the ejector nozzle, the ejector receiving chamber is connected to a source of a gaseous medium, the separator gas outlet is connected to a consumer of compressed gas (see, Lyamaev B.F., “Hydro-jet pumps and units” book, Leningrad, “Mashinostroenie”, 1988, pages 232-233).
This compression unit can be used as a self-contained system for delivery of a compressed gas, for example air, to a consumer. However, the efficiency factor of such units is relatively low, which is why compression units of this type have not found wide application.
SUMMARY OF THE INVENTION
The present invention is aimed at increasing the efficiency factor and compression ratio of a pump-ejector compression unit by reducing energy consumption required for gas compression.
These objectives are achieved as follows: a pump-ejector compression unit including a pump, a separator and a liquid-gas ejector composed of a receiving chamber, a nozzle and a mixing chamber, where the receiving chamber is connected to a source of a gaseous medium and the ejector nozzle is connected to the discharge side of the pump, is furnished further with a receiver, the ejector mixing chamber and the separator are located inside this receiver, an outlet of the mixing chamber is connected to the separator, the receiver is partly filled with a liquid motive medium, the liquid inlet of the receiver is connected to the discharge side of the pump, the gas outlet of the receiver is connected to a consumer of the compressed gaseous medium.
There is another embodiment of the unit providing solution(s) of the stated technical problems. In this embodiment a pump-ejector compression unit, which comprises a pump, a separator and a liquid-gas ejector composed of a receiving chamber, a nozzle and a mixing chamber, is furnished with a vortex separation element placed inside the separator and the ejector belonging to the unit is furnished with a chamber for conversion of a gas-liquid flow. In this case the suction side of the pump is connected to the separator, the discharge side of the pump is connected to the ejector nozzle, the ejector receiving chamber is connected to a source of a gaseous medium and to a source of a fresh liquid motive medium, the gas outlet of the separator is connected to a consumer of the compressed gaseous medium, the ejector mixing chamber is located inside the separator, an inlet of the conversion chamber is connected to an outlet of the mixing chamber. The chamber for conversion of a gas-liquid flow represents a divergent canal, which enlarges stepwise, and the vortex separation element is installed in the separator at the outlet of this divergent canal.
Regardless of the variant of design, the separator of the pump-ejector compression unit can be a hydrocyclone or a bent plate, in the direction of which the mixing chamber or the divergent canal is installed tangentially. The mixing chamber can have a divergent diffuser at its outlet, the receiver can be furnished with a level gage and the pump can be equipped with a regulator connected to the level gage of the receiver. The gas outlet of the separator of a hydrocyclone type located inside the receiver communicates with a gas-filled space of the receiver. The liquid outlet of the separator communicates with a liquid-filled space of the receiver. Thus a hydroseal is formed at the liquid outlet of the separator.
In addition, the unit can be furnished with a heat exchanger-cooler of the liquid motive medium installed between the liquid outlet of the receiver and the suction port of the pump, and with a heat exchanger-cooler of the compressed gaseous medium, installed at the gas discharge port of the receiver. The latter can be equipped with a pipe for removing condensate of the motive liquid and feeding it into the receiver.
Experimental research has shown that the most important factors influencing performance of the pump-ejector compression unit are the proper passing of working process in the flow-through channel of the liquid-gas ejector and consistency of operating regimes of the ejector and the separator.
It was discovered that the location of the ejector mixing chamber inside the separator allows a practically isothermal compression, which results in an increased gas compression ratio and in an increased capacity of the liquid-gas ejector at lower levels of energy consumption. Additionally, location of the mixing chamber inside the separator makes the unit more compact and ergonomic. Such an arrangement also provides a reduced specific material consumption during manufacture of the unit because in this case pressure differential on the walls of the mixing chamber is reduced and a pipe for delivery of a gas-liquid mixture from the ejector to the separator is not required. In turn, simplification of the unit design due to a reduction of structural ties between the structural components of the unit makes the unit more reliable.
If a chamber for conversion of a gas-liquid flow is installed at the outlet of the ejector mixing chamber instead of a conventional diffuser, a higher gas compression ratio can be achieved. At the same time, operation of the ejector becomes more stable and the gas-liquid flow is decelerated more effectively before its entry into the separator. This variant of the ejector design is preferable when the gas compression ratio and compactness of the unit are the foremost parameters. The variant of the ejector design without a chamber for conversion of a gas-liquid flow, i.e. the variant wherein the ejector mixing chamber has a diffuser or has nothing at all at its outlet, is more simple in production and more advisable in case of a relatively low required capacity of the compression unit.
There is a distinction in kind between operation of a chamber for conversion of a gas-liquid flow and a diffuser. A diffuser is designed for smooth transformation of kinetic energy of a flow into pressure with minimal energy losses, while the chamber for conversion of a gas-liquid flow is able to provide a much higher compression ratio because a gas-liquid flow undergoes more vigorous transformations in this chamber and consequently other processes take place there. In the conversion chamber the flow is subjected to abrupt expansion in a divergent canal which enlarges stepwise. As a result of the expansion density of the flow drops, mainly due to expansion of its gaseous components. Therefore speed of sound in this gas-liquid medium is significantly reduced. That allows conversion of the flow into a supersonic or at least a sonic flow regime. Then a pressure jump is organized in the supersonic f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pump-ejector compression unit and variants does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pump-ejector compression unit and variants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pump-ejector compression unit and variants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2854078

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.