Pump and pump control circuit apparatus and method

Pumps – Condition responsive control of pump drive motor – By control of electric or magnetic drive motor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S053000, C417S423140, C417S559000

Reexamination Certificate

active

06623245

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to pumps and pumping methods, and more particularly to wobble plate pumps and pump controls.
BACKGROUND OF THE INVENTION
Wobble-plate pumps are employed in a number of different applications and operate under well-known principals. In general, wobble-plate pumps typically include pistons that move in a reciprocating manner within corresponding pump chambers. In many cases, the pistons are moved by a cam surface of a wobble plate that is rotated by a motor or other driving device. The reciprocating movement of the pistons pumps fluid from an inlet port to an outlet port of the pump.
In many conventional wobble plate pumps, the pistons of the pump are coupled to a flexible diaphragm that is positioned between the wobble plate and the pump chambers. In such pumps, each one of the pistons is an individual component separate from the diaphragm, requiring numerous components to be manufactured and assembled. A convolute is sometimes employed to connect each piston and the diaphragm so that the pistons can reciprocate and move with respect to the remainder of the diaphragm. Normally, the thickness of each portion of the convolute must be precisely designed for maximum pump efficiency without risking rupture of the diaphragm.
Many conventional pumps (including wobble plate pumps) have an outlet port coupled to an outlet chamber located within the pump and which is in communication with each of the pump chambers. The outlet port is conventionally positioned radially away from the outlet chamber. As the fluid is pumped out of each of the pump chambers sequentially, the fluid enters the outlet chamber and flows along a circular path. However, in order to exit the outlet chamber through the outlet port, the fluid must diverge at a relatively sharp angle from the circular path. When the fluid is forced to diverge from the circular path, the efficiency of the pump is reduced, especially at lower pressures and higher flow rates.
Many conventional pumps include a mechanical pressure switch that shuts off the pump when a certain pressure (i.e., the shut-off pressure) is exceeded. The pressure switch is typically positioned in physical communication with the fluid in the pump. When the pressure of the fluid exceeds the shut-off pressure, the force of the fluid moves the mechanical switch to open the pump's power circuit. Mechanical pressure switches have several limitations. For example, during the repeated opening and closing of the pump's power circuit, arcing and scorching often occurs between the contacts of the switch. Due to this arcing and scorching, an oxidation layer forms over the contacts of the switch, and the switch will eventually be unable to close the pump's power circuit. In addition, most conventional mechanical pressure switches are unable to operate at high frequencies, which results in the pump being completely “on” or completely “off.” The repeated cycling between completely “on” and completely “off” results in louder operation. Moreover, since mechanical switches are either completely “on” or completely “off,” mechanical switches are unable to precisely control the power provided to the pump.
Wobble-plate pumps are often designed to be powered by a battery, such as an automotive battery. In the pump embodiments employing a pressure switch as described above, power from the battery is normally provided to the pump depending upon whether the mechanical pressure switch is open or closed. If the switch is closed, full battery power is provided to the pump. Always providing full battery power to the pump can cause voltage surge problems when the battery is being charged (e.g., when an automotive battery in a recreational vehicle is being charged by another automotive battery in another operating vehicle). Voltage surges that occur while the battery is being charged can damage the components of the pump. Conversely, voltage drop problems can result if the battery cannot be mounted in close proximity to the pump (e.g., when an automotive battery is positioned adjacent to a recreational vehicle's engine and the pump is mounted in the rear of the recreational vehicle). Also, the voltage level of the battery drops as the battery is drained from use. If the voltage level provided to the pump by the battery becomes too low, the pump may stall at pressures less than the shut-off pressure. Moreover, when the pump stalls at pressures less than the shut-off pressure, current is still being provided to the pump's motor even through the motor is unable to turn. If the current provided to the pump's motor becomes too high, the components of the pump's motor can be damaged.
In light of the problems and limitations described above, a need exists for a pump apparatus and method employing a diaphragm that is easy to manufacture and is reliable (whether having integral pistons or otherwise). A need also exists for a pump having an outlet port that is positioned for improved fluid flow from the pump outlet port. Furthermore, a need further exists for a pump control system designed to better control the power provided to the pump, to provide for quiet operation of the pump, and to prevent voltage surges, voltage drops, and excessive currents from damaging the pump. Each embodiment of the present invention achieves one or more of these results.
SUMMARY OF THE INVENTION
Some preferred embodiments of the present invention provide a diaphragm for use with a pump having pistons driving the diaphragm to pump fluid through the pump. The pistons can be integrally formed in a body portion of the diaphragm, thereby resulting in fewer components for the manufacture and assembly of the pump. Also, each of the pistons are preferably coupled (i.e., attached to or integral therewith) to the body portion of the diaphragm by a convolute. Each of the pistons can have a top surface lying generally in a single plane. In some embodiments, each convolute is comprised of more material at its outer perimeter so that the bottom surface of each convolute lies at an angle with respect to the plane of the piston top surfaces. The angled bottom surface of the convolutes allows the pistons a greater range of motion with respect to the outer perimeter of the convolute, and results in reduced diaphragm stresses for longer diaphragm life.
In some preferred embodiments of the present invention, an outlet port of the pump is positioned tangentially with respect to the perimeter of an outlet chamber. The tangential outlet port allows fluid flowing in a circular path within the outlet chamber to continue along the circular path as the fluid exits the outlet chamber. This results in better pump efficiency, especially at lower pressures and higher flow rates.
Some preferred embodiments of the present invention further provide a pump having a non-mechanical pressure sensor coupled to a pump control system. Preferably, the pressure sensor provides a signal representative of the changes in pressure within the pump to a microcontroller within the pump control system. Based upon the sensed pressure, the microcontroller can provide a pulse-width modulation control signal to an output power stage coupled to the pump. The output power stage selectively provides power to the pump based upon the control signal. Preferably, due to the pulse-width modulation control signal, the speed of the pump gradually increases or decreases rather than cycling between completely “on” and completely “off,” resulting in more efficient and quieter operation of the pump.
The pump control system can also include an input power stage designed to be coupled to a battery. The microcontroller is coupled to the input power stage in order to sense the voltage level of the battery. If the battery voltage is above a high threshold (e.g., when the battery is being charged), the microcontroller preferably prevents power from being provided to the pump. If the battery voltage is below a low threshold (e.g., when the voltage available from the battery will allow the pump to stall below

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pump and pump control circuit apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pump and pump control circuit apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pump and pump control circuit apparatus and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106604

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.