Pump

Dispensing – With discharge assistant – With movable nozzle interconnected therewith

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S340000

Reexamination Certificate

active

06186369

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention concerns a pump intended for use with flowable media, especially a cosmetic pump, provided with a base plate which can be secured to a container and presents, once mounted, a lower side turned to the container and an upper side turned in the opposite direction, with an inlet for letting through the medium stored in the container and, around the inlet on the upper surface, a sleeve for receiving a pumping device with a cover-fitted piston, which is pushed against the base plate by at least one compression spring, while said piston has a lower side turned to the container, an upper side turned in the opposite direction and an outlet, while said lower side is provided with a sealing sleeve mounted moveable in a substantially axial direction.
A known pump of the type described is known to the applicant from prior art available within the company. The pump comprises a steel ball, which can be positioned on the inlet in the base plate to form a seal and which is pressed into or onto the inlet in the base plate by two helical springs which can be clamped below the lower side of the piston. As a rule, intermediate elements are inserted between the individual helical springs in this context, in order to improve the guidance of the springs. Packing rings are used to form a seal between the piston and a cap which can be mounted on it and serves to simplify operation of the piston. As a rule, a pump known from the prior art consists of 7 to 8 different components. As many of the components as possible are preferably made as injection-moulded plastic parts and fastened on a neck of the container.
Comparable pumps are known from DE 32 46 105 and DE 29 02 624.
These pumps have various drawbacks. On the one hand, their assembly is time-consuming and expensive, as several components, which are additionally made of different materials, have to be accurately connected to one another in order to guarantee perfect operation of the pump. A certain minimum overall height of the pump is necessary owing to the number of components. As a result of this relatively tall design, a major portion of the pump reaches up into the upper bottle neck. This is a disadvantage, particularly in view of the increasing use of transparent containers, as this part of the pump spoils the overall aesthetic impression. In addition, a sufficiently large opening is required in order to insert the pump into the container. On the other hand, these components cannot be transferred to the area above the bottle neck without further ado, as there are again certain restrictions regarding the overall height.
SUMMARY OF THE INVENTION
Consequently, the object of the present invention is to simplify the design of the generic pump.
According to the invention, this object is solved in that the pumping device has a valve spring which is provided with a sealing bottom plate which can be laid on the inlet in the base plate and a sealing top plate which can be laid on a support of the sealing sleeve emerging essentially radially relative to the longitudinal axis of the pump, where the bottom plate and the top plate are linked by at least one spring element. The bottom plate is expediently designed as a disk valve.
The design of the valve spring is particularly simple. It preferably consists of a single component which is inserted between the sealing sleeve and the base plate sleeve during assembly.
No attention need be paid to the accurate fit and seating of several components relative to one another. This reduces the manufacturing costs. Moreover, the valve spring offers the opportunity of substantially reducing the overall height. The entire pumping device can be located in the area above the base plate, meaning that no components have to project into the container neck. This makes it possible also to use containers having an opening with a very small cross-section, which were previously unsuitable for the use of a pump.
The compression spring is preferably located between the lower side of the piston and the upper side of the base plate, on the side of the sealing sleeve and the base plate sleeve facing away from the centre line of the pump. This prevents the compression spring from coming into contact with the sealing sleeve or the base plate sleeve when the pump is operated.
It is particularly advantageous for simple and low-cost manufacturing and assembly if the compression spring is integrally moulded on the piston. This reduces the absolutely necessary number of components to four, as the pump then only comprises the base plate, the piston, the valve spring and the cap, although the cap is not an absolutely necessary component.
Particularly good guidance of the sealing sleeve is achieved if the upper side of the base plate displays a guide sleeve, which is integrally moulded on the base plate at a distance from the base plate sleeve in the direction facing away from the centre line of the pump, and the sealing sleeve engages between the base plate sleeve and the guide sleeve. However, if the pump is to be of particularly simple design, it is also possible for the sealing sleeve to engage the inner side of the base plate sleeve to form a seal and for no guide sleeve to be provided.
In order to enhance the sealing effect, the base plate sleeve has a lip seal which lies against the inner side of the sealing sleeve to form a seal. This means that additional packing rings can also be dispensed with.
For the same reason, the outer side of the sealing sleeve also preferably displays a lip seal which can be laid against the inner side of the guide sleeve to form a seal. The lip seals are preferably located on the top edges of the sleeves, although they can also be arranged in different positions, depending on the application.
In the case of a pump designed as an air-aspirating system, at least one inlet aperture is provided for ambient air, this inlet aperture being designed as an air aperture located on the side of the base plate sleeve facing away from the inlet in the base plate, through which air can flow into the container. However, the pump according to the invention can also be designed as an airless system, in which case the air aperture is dispensed with.
The air aperture is preferably located between the base plate sleeve and the guide sleeve. The sealing sleeve then acts as a control valve to regulate the entry of air into the container. Air can flow into the container when the pump is depressed to such a point that the sealing edge of the sealing sleeve enters the air aperture and there is thus no longer a seal between the sealing sleeve and the guide sleeve.
For using the pump in connection with liquid media, where the pump has an integrally moulded duct on the piston for guiding the medium out of the pump through an outlet aperture, the duct is designed in such a way that the flow velocity of the medium is increased. The duct is preferably integrated in the piston cover and is provided with a least one ring-shaped segment which displays a reduced cross-section at at least one point. The ring-shaped segment acts as an acceleration chamber, in which the flow velocity of the medium is greatly increased as a result of the centrifugal force.
The duct can also display a linear segment, where the cross-section of the linear segment decreases in the direction of flow of the medium. This nozzle-type design likewise increases the flow velocity of the medium. The duct can display both an arc-shaped and a linear segment, which merge into each other in order to combine their effects. Depending on the field of application, it is also possible to provide an alternating arrangement of several different segments.
The duct can additionally display a deflector wall running essentially perpendicular to the direction of flow of the medium flowing through the duct. The medium is atomised when it hits this baffle wall.
In order to further reduce the overall height, it is possible, in the case of a pump operated by means of a cap fitted on the piston, to integrally mould at least part of the duct in the cap,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595415

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.