Electric power conversion systems – Current conversion – With means to introduce or eliminate frequency components
Reexamination Certificate
2001-10-04
2003-05-27
Sterrett, Jeffrey (Department: 2838)
Electric power conversion systems
Current conversion
With means to introduce or eliminate frequency components
C363S037000, C363S098000
Reexamination Certificate
active
06570779
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention pertains to an inverter generation apparatus for converting an output of a DC power circuit to generate a DC voltage from an output obtained from a power supply source of a generator into an AC voltage having a desired waveform by using an inverter.
BACKGROUND OF THE INVENTION
In many cases, there have been used an inverter generation apparatus for converting a DC voltage obtained by rectifying an output of an AC generator into an AC voltage having a predetermined peak value and a predetermined frequency by using an inverter as an electric power supply apparatus including the AC generator driven by a primer such as an internal combustion engine and so on.
Such an inverter generation apparatus comprises a DC power circuit to output a constant DC voltage a bridge inverter to convert the DC voltage from the DC power circuit into an AC voltage, a controller to control the inverter, a filter to remove a harmonic component out of the output of the inverter, load connection terminals across which an output of the filter is applied, a load current detection circuit to detect a load current and an output voltage detection circuit to detect a voltage across the load connection terminals.
The DC power circuit comprises an internal combustion engine having a rotational speed controlled so as to rotate at a constant speed, a three-phase AC generator driven by the internal combustion engine, a control rectifier circuit to rectify an output of the AC generator, a control circuit to control the control rectifier circuit so as to maintain a DC voltage from the control rectifier circuit at a constant value and a smoothing capacitor connected across output terminals of the control rectifier circuit, for example.
The control rectifier circuit comprises a mixed bridge circuit having thyristors and diodes connected in the form of bridge so as to form a three phase full wave rectifier circuit. Three phase input terminals of the three phase full wave rectifier circuit are connected to three phase output terminals of the generator and the smoothing capacitor is connected to DC output terminals of the three phase full wave rectifier circuit.
The bridge inverter comprises a conventional circuit including four switch elements connected to each other in the form of bridge. The bridge inverter serves to convert the output voltage of the DC power circuit into the AC voltage by controlling the respective switch elements of the inverter so that a period during which one pair of switch elements located at one dialogical position of the bridge are in the on-state and a period during which another pair of switch elements located at another dialogical position thereof are in the on-state alternately appear.
The filter provided on the output side of the inverter is formed of a low pass filter comprising coils, capacitors and resistors and serves to remove a harmonic component included in the output of the inverter to form the output
The controller serves to generate a pulse width modulation signal (PWM signal) commanding to turn on and off the predetermined switch elements of the inverter at a predetermined duty ratio to each of the switch timings appearing for a predetermined PWM period so as to generate the AC voltage of a given waveform across the pair of the load connection terminals.
Also, the controller serves to read the instant value of the voltage across the load connection terminals through the output voltage detection circuit and compare the actually read instant value of the AC voltage with the desired instant value of the AC voltage to be obtained across the load connection terminals, which is previously stored in a ROM or the like of the microcomputer to correct the on-off duty ratio of the switch elements of the inverter to each of the switch timings. This obtains the AC output voltage of sine wave having the desired instant value across the load connection terminals.
Furthermore, the controller serves to stop supplying a drive signal to each of the switch elements of the inverter when the load current exceeds the allowable maximum value and then the value of the output voltage of the load current detection circuit exceeds the maximum value. Thus, the controller stops the operation of the inverter and prevents the switch elements of the inverter from being damaged due to its overcurrent.
However, in case that the AC voltage of the desired value is obtained across the load connection terminals by feeding back the instant value of the AC voltage across the load connection terminals to the controller to correct the duty ratio so that the AC voltage of desired magnitude is obtained across the load connection terminals, the waveform of the AC output voltage is disadvantageously distorted when the output voltage of the DC power circuit is lower than the peak value of the AC output voltage to be obtained across the load connection terminals and when the output voltage of the DC power circuit exceeds the peak value of the AC output voltage to be obtained across the load connection terminals.
Thus, in the prior inverter generation apparatus, it is difficult to maintain the waveform of the AC output voltage in case that the output voltage of the DC power circuit has the narrow allowance range of variation allowing the desired waveform of the AC output voltage to be maintained and therefore in case that the load has the larger variation width.
SUMMARY OF THE INVENTION
Accordingly, it is a principal object of the invention to provide an inverter generation apparatus adapted to have a wider allowance range of variation of an output voltage of a DC power circuit allowing a waveform of an AC output voltage without any distort of the waveform of the AC output voltage even though the output voltage of the DC power circuit has some variation.
In accordance with one aspect of the invention, there is provided an inverter generation apparatus comprising a DC power circuit to obtain a DC voltage from an output of a generator as a power source, a bridge type inverter to which the DC voltage is input from the DC power circuit, a filter to remove a harmonic component of an output of the inverter, load connection terminals to which the output of the filter is input and a controller to control an on-off operation of each of predetermined switch elements of the inverter in a predetermined duty ratio to switch timings appearing for predetermined PWM period so as to obtain an AC output voltage of desired waveform across the load connection terminals, the controller comprising duty correction means to correct the duty ratio of the on-off operation of the element switches on-off driven to each of the switch timings for maintaining a predetermined waveform of the AC output voltage obtained across the load connection terminals even though the output voltage of said DC power circuit varies.
In a preferred mode of the invention, the inverter generation apparatus further comprises a DC voltage detection circuit to detect a DC voltage output by the DC power circuit and the controller comprises duty correction means to correct the duty ratio of said on-off operation of the element switches on-off driven to each of the switch timings in accordance with a magnitude of the DC voltage detected by the DC voltage detection circuit for maintaining a set peak value of the AC output voltage obtained across the load connection terminals.
In another preferred mode of the invention, the inverter generation apparatus further comprises a DC voltage detection circuit to detect a DC voltage VD output by the DC power circuit and the controller comprises reference duty ratio arithmetical operation means to arithmetically operate as a reference duty ratio Do an on-off duty ratio of the switch elements to each of the switch timings for forming a desired waveform of the AC output voltage obtained from the inverter through the filter, correction coefficient arithmetical operation means to arithmetically operate a correction coefficient Kv=VA/VD by which the reference duty ratio to each of the switch timi
Inaba Yutaka
Nakagawa Masanori
Shimazaki Mitsuyoshi
Shinba Kaoru
Kokusan Denki Co. Ltd.
Pearne & Gordon LLP
Sterrett Jeffrey
LandOfFree
Pulse with modulation inverter generation using a correction... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pulse with modulation inverter generation using a correction..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse with modulation inverter generation using a correction... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061191