Pulse-wave-propagation-relating information obtaining...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S587000

Reexamination Certificate

active

06475155

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for determining a bifurcate portion of an artery which is present under skin of a living subject, and an apparatus for detecting a pulse wave from a pulse-wave-detect portion of the artery that is determined based on the bifurcate portion and obtaining accurate pulse-wave-propagation-relating information based on the pulse wave.
2. Discussion of Related Art
As physical information relating to circulatory organ of a living subject, there is known a pulse-wave propagation time in which a pulse wave propagates between two predetermined portions of an artery, and a pulse-wave propagation velocity which is calculated based on the pulse-wave propagation time and the distance between the two predetermined portions of the artery. Hereinafter, the pulse-wave propagation time and the pulse-wave propagation velocity will be referred to as the pulse-wave-propagation-relating information or PWP-relating information. The PWP-relating information reflects the blood pressure (BP) of the subject. Therefore, it has been practiced to monitor the PWP-relating information and, when a change thereof is detected, start an automatic BP measurement on the subject. It is also practiced to obtain, each time the heart of the subject beats, a piece of PWP-relating information and estimate, based on the obtained information, a BP value of the subject. In addition, since the PWP-relating information reflects the flexibility of arteries of the subject, the information is utilized to measure the degree of arteriosclerosis, and/or the degree of peripheral resistance, of the subject.
Meanwhile, a pulse-wave propagation time is obtained by detecting respective heartbeat-synchronous signals from two portions of an artery of a living subject and subtracting a first time at which a first heartbeat-synchronous signal from a first portion of the artery from a second time at which a second heartbeat-synchronous signal from a second portion of the artery; and a pulse-wave propagation velocity is obtained by dividing the distance between the first and second portions of the artery by the pulse-wave propagation time. Two sensors are used to detect the first and second heartbeat-synchronous signals from the first and second portions of the artery, respectively. At least one of the two sensors is provided by a pressure-pulse-wave sensor which presses an appropriate portion of the artery via skin of the subject and detects, from the pressed portion, a pressure pulse wave which is produced in synchronism with the heartbeat of the subject. In this case, usually, a characteristic point of the waveform of the thus detected pressure pulse wave, such as a rising point (i.e., a minimum-value point), a maximum-slope point, a maximum-value point, or a well-known “notch” point, is employed as a reference point to obtain a piece of PWB-relating information.
However, it is difficult for a living subject or a medical staff (e.g., a doctor or a nurse) to iteratively press the pressure-pulse-wave sensor against substantially the same portion of the artery to detect a pressure pulse wave in respective measurements at different times. Therefore, the distance between the two portions of the artery that is used to measure the pulse-wave propagation time or velocity may change between the different measurements. Accordingly, the thus measured propagation times or velocities cannot enjoy a satisfactory accuracy. Thus, it is difficult to compare the propagation times or velocities measured at different times, with each other, or detect a time-wise change of the propagation times or velocities.
In this background, one may possibly think to use a bone near an artery, as a reference point, and press the pressure-pulse-wave sensor at a measure point distant by a predetermined distance from the reference point. For example, a base portion of a costa of each living subject may be used as a reference point, and a predetermined distance from the reference point to a measure point above a carotid artery may be recorded or stored for the each subject. In this case, in each of respective measurements at different times, the sensor is pressed at the measure point above the carotid artery that is distant by the predetermined distance from the reference point. However, generally, a living person is mechanically soft and it is difficult to fix his or her joints. Thus, it is difficult to fix his or her head or neck in the same posture in each measurement. Therefore, even if the sensor may be accurately pressed at the measure point above the carotid artery distant by the predetermined distance from the base portion of the costa, the sensor may not be accurately pressed against substantially the same portion of the artery in every measurement.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a pulse-wave-propagation-relating-information obtaining apparatus and an arterial-bifurcate-portion determining apparatus each of which assures accurate measurement of pulse-wave-propagation-relating information.
To achieve the above object, the present inventors have carried out an extensive study, and found the fact that when a bifurcate portion of an artery, or a portion of the artery distant by a predetermined distance from the bifurcate portion is used as a pulse-wave-detect portion, accurate pulse waves can be detected because those pulse waves are free of the conventionally encountered problem that subject's head or neck cannot be fixed to the same posture in every measurement because of his or her mechanical softness and/of the difficulty of fixing of his or her joints. The present invention has been developed based on this finding.
The present invention provides a pulse-wave-propagation (PWP) relating information obtaining apparatus and an arterial-bifurcate-portion determining apparatus which have one or more of the following technical features that are described below in respective paragraphs given parenthesized sequential numbers (1) to (8). Any technical feature that includes another technical feature shall do so by referring, at the beginning, to the parenthesized sequential number given to the latter feature. However, the following technical features and the appropriate combinations thereof are just examples to which the present invention is by no means limited.
(1) According to a first feature of the present invention, there is provided an apparatus for obtaining a pulse-wave-propagation-relating information of a living subject, comprising a bifurcate-portion determining device which determines a bifurcate portion of an artery of the subject that is present under a skin of the subject; a pulse-wave-detect-portion determining means for determining, based on the determined bifurcate portion of the artery, a pulse-wave-detect portion of the artery from which a pulse wave is detected; a reference-point determining means for determining a reference point on the pulse wave detected from the determined pulse-wave-detect portion of the artery; and a pulse-wave-propagation-relating-information obtaining means for obtaining the pulse-wave-propagation-relating information of the subject based on the determined reference point of the pulse wave.
In the present PWP-relating-information obtaining apparatus, the pulse-wave-detect-portion determining means determines, based on the bifurcate portion of the artery determined by the bifurcate-portion determining device, a pulse-wave-detect portion of the artery, and the reference-point determining means determines a reference point on the pulse wave detected from the determined pulse-wave-detect portion of the artery. Then, the PWP-relating-information obtaining means obtains the PWP-relating information of the subject based on the determined reference point of the pulse wave. Thus, the pulse-wave-detect portion is determined based on the bifurcate portion of the artery itself, and the PWP-relating information is obtained based on the reference point of the pulse wave detected from the p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pulse-wave-propagation-relating information obtaining... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pulse-wave-propagation-relating information obtaining..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse-wave-propagation-relating information obtaining... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967748

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.