Pulse-responsive dipole antenna

Communications: directive radio wave systems and devices (e.g. – Presence detection only

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S021000, C343S793000

Reexamination Certificate

active

06606051

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to radio systems wherein time-spaced, essentially monocycle-like signals are created from DC pulses and transmitted into space wherein the resulting energy bursts are dispersed in terms of frequency to where the spectral density essentially merges with ambient noise, and yet information relating to these bursts is recoverable.
BACKGROUND OF THE INVENTION
Radio transmissions have heretofore been largely approached from the point of view of frequency channelling. Thus, coexistent orderly radio transmissions are permissible by means of assignment of different frequencies or frequency channels to different users, particularly as within the same geographic area. Essentially foreign to this concept is that of tolerating transmissions which are not frequency limited. While it would seem that the very notion of not limiting frequency response would create havoc with existing frequency denominated services, it has been previously suggested that such is not necessarily true, and that, at least theoretically, it is possible to have overlapping use of the radio spectrum. One suggested mode is that provided wherein very short (on the order of one nanosecond or less) radio pulses are applied to a broadband antenna which ideally would respond by transmitting short burst signals, typically comprising three or four polarity lobes, which comprise, energywise, signal energy over essentially the upper portion (above 100 megacycles) of the most frequently used radio frequency spectrum, that is, up to the mid-gigahertz region. A basic discussion of impulse effected radio transmission is contained in article entitled “Time Domain Electromagnetics and Its Application,” Proceedings of the IEEE, Volume 66, No. 3, March 1978. This article particularly suggests the employment of such technology for baseband radar, and ranges from 5 to 5,000 feet are suggested. As noted, this article appeared in 1978, and now, 16 years later, it is submitted that little has been accomplished by way of achieving commercial application of this technology.
From both a theoretical and an experimental examination of the art, it has become clear to the applicant that the lack of success has largely been due to several factors. One is that the extremely wide band of frequencies to be transmitted poses very substantial requirements on an antenna. Antennas are generally designed for limited frequency bandwidths, and traditionally when one made any substantial change in frequency, it became necessary to choose a different antenna or an antenna of different dimensions. This is not to say that broadband antennas do not, in general, exist; however, applicant has reviewed many types including bicone, horn, and log periodic types and has determined that none provided a practical antenna which will enable impulse radio and radar usage to spread beyond the laboratory. Of the problems experienced with prior art antennas, it is to be noted that log periodic antennas generally produce an undesired frequency dispersion. Further, in some instances, elements of a dipole type antenna may be configured wherein there is a DC path between elements, and such is not operable for employment in applicant's transmitter.
A second problem which has plagued advocates of the employment of impulse or time domain technology for radio is that of effectively receiving and detecting the presence of the wide spectrum that a monocycle burst produces, particularly in the presence of high levels of existing ambient radiation, presently nearly everywhere. Ideally, a necessary antenna would essentially evenly reproduce the spectrum transmitted, and the receiver it feeds would have special properties which enable it to be utilized despite the typically high noise level with which it must compete. The state of the art prior to applicant's entrance generally involved the employment of brute force detection, i.e., that of threshold or time threshold gate detection. Threshold detection simply enables passage of signals higher than a selected threshold level. The problem with this approach is obvious that if one transmits impulse generated signals which are of sufficient amplitude to rise above ambient signal levels, the existing radio services, producing the latter may be unacceptably interfered with. For some reason, perhaps because of bias produced by the wide spectrum of signal involved, e.g., from 50 mHz to on the order of 5 gHz or ever higher, the possibility of coherent detection has been thought impossible.
Accordingly, it is an object of this invention to provide an impulse or time domain (or baseband) transmission system which attacks all of the above problems and to provide a complete impulse time domain transmission system which, in applicant's view, eliminates the known practical barriers to its employment, and, importantly, its employment for all important electromagnetic modes of radio, including communications, telemetry, navigation and radar.
SUMMARY OF THE INVENTION
With respect to the antenna problem, applicant has determined a truly pulse-responsive antenna which translated an applied DC impulse into essentially a monocycle. It is a dipole which is completely the reverse of the conventional bat wing antenna and wherein two triangular elements of the dipole are positioned with their bases closely adjacent but DC isolated. They are driven at near adjacent points on the bases bisected by a line between apexes of the two triangular elements. This bisecting line may mark a side or height dimension of the two triangular elements. Alternately, a monopole configuration is employed.
As a further consideration, power restraints in the past have been generally limited to the application of a few hundred volts of applied signal energy to the transmitting antenna. Where this is a problem, it may be overcome by a transmitter switch which is formed by a normally insulating crystalline structure, such as diamond material sandwiched between two metallic electrodes, which are then closely coupled to the elements of the antenna. This material is switched to a conductive, or less resistive, state by exciting it with an appropriate wavelength beam of light, ultraviolet in the case of diamond. In this manner, no metallic triggering communications line extends to the antenna which might otherwise pick up radiation and re-radiate it, adversely affecting signal coupling to the antenna and interfering with the signal radiated from it, both of which tend to prolong the length of a signal burst, a clearly adverse effect.
With respect to a radio receiver, a like receiving antenna is typically employed to that used for transmission as described above, although a single antenna and transmit-receive switch may Be substituted. Second, a locally generated, coordinately timed signal, to that of the transmitted signal, is either detected from the received signal, as in communications or telemetry, or received directly from the transmitter, as, for example, in the case of radar. Then, the coordinately timed signal, typically including a basic half cycle, or a few, up to 10 half cycles, of signal, is mixed or multiplied by a factor of 1 (as with sampling or gating of the received signals), or ideally, as where the coordinately locally generated signal is curved, the factor is greater than one, giving rise to amplification in the process of detection, a significant advantage. Thus, the modulation on a signal, or position of a target at a selected range, as the case may be, is determined. Such a detection is further effected by an integration of the detected signal, with enhanced detection being accomplished by both a short term (first) and long term (second) integration. In this latter process, individual pulse signals are, first, integrated only during their existence to accomplish short term integration, and following this, the resultant short term integration signals are long term integrated by integrating a selected number of these and particularly by a method which omits the noise signal content which occurs between

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pulse-responsive dipole antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pulse-responsive dipole antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse-responsive dipole antenna will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3084102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.