Pulse oxymetry data processing

Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S336000

Reexamination Certificate

active

06668182

ABSTRACT:

The present invention relates in general to electrocardiographic (ECG) and oxygen saturation signal recording and more particularly concerns a novel technique for processing the ECG and oxygen saturation signals.
BACKGROUND OF THE INVENTION
For background on ECG and oxygen saturation signal recording reference is made to U.S. Pat. No. 6,125,296.
A typical prior art approach for measuring oxygen saturation uses either a large nonportable bedside unit or a portable unit with recording capability.
An object of this invention is to provide an automatic mechanism for identifying those portions of the recorded pulse oxymetry data signals that are invalid.
Another object of the invention is to use pulse oxymetry data signals, which this invention determines as valid, and identify those segments of the data signals that are valid desaturation signals.
BRIEF SUMMARY OF THE INVENTION
In one aspect, the invention is a method for processing pulse oxymetry data signals. The method includes recording pulse oxymetry data signals. The pulse oxymetry data signals have a plurality of oxymetry waveforms. The pulse oxymetry data signals correspond to oxygen saturation data signals. The method also includes determining a correlation coefficient between sequential oxymetry waveforms and identifying a valid pulse oxymetry waveform.
This aspect of the invention may have one or more of the following features. Determining the correlation coefficient includes storing a first pulse oxymetry waveform segment having a first length in a first buffer, copying the first pulse oxymetry waveform segment from the first buffer to a second buffer, copying a second pulse oxymetry waveform segment having a second length to the first buffer, comparing the first length, the second length and a predetermined value, and determining a correlation length related to the first and second lengths and the predetermined value. Determining a correlation length includes taking the minimum of the first length, the second length, and the predetermined value. Determining a correlation coefficient includes determining a correlation coefficient from the first pulse oxymetry waveform segment and the second pulse oxymetry waveform segment, comparing the correlation coefficient to a threshold value, and filtering out an invalid pulse oxymetry waveform segment that has a correlation coefficient below the threshold value. Filtering out the invalid pulse oxymetry waveform segment includes eliminating pulse oxymetry waveform segments if 75% of the correlation coefficients for the last 6 seconds are above the threshold value of 0.9. The method also includes determining valid oxygen desaturation data signals. Determining valid desaturation signals comprises labeling oxygen saturation signals below a threshold value for a predetermined time as valid desaturation data. The threshold value is 88% and the predetermined time is 300 seconds. Determining valid desaturation signals comprises eliminating artifacts. Determining valid desaturation signals comprises ignoring desaturation signals below the threshold value that do not reach a peak value.
In another aspect, the invention is an apparatus for processing pulse oxymetry data signals. The apparatus includes a memory that stores executable instruction data signals and a processor. The processor executes the instruction data signals to record the pulse oxymetry data. The pulse oxymetry data has a plurality of oxymetry waveforms. The pulse oxymetry data signals correspond to oxygen saturation data signals. The processor also executes the instruction data signals to determine a correlation coefficient between sequential oxymetry waveforms and to identify invalid pulse oxymetry waveforms.
This aspect of the invention may have one or more of the following features. Determining the correlation coefficient includes storing a first pulse oxymetry waveform segment having a first length in a first buffer, copying the first pulse oxymetry waveform segment from the first buffer to a second buffer, copying a second pulse oxymetry waveform segment having a second length to the first buffer, comparing the first length, the second length and a predetermined value, and determining a correlation length related to the first and second lengths and the predetermined value. Determining a correlation length includes taking the minimum of the first length, the second length, and the predetermined value. Determining a correlation coefficient includes determining a correlation coefficient from the first pulse oxymetry waveform segment and the second pulse oxymetry waveform segment, comparing the correlation coefficient to a threshold value, and filtering out an invalid pulse oxymetry waveform segment that has a correlation coefficient below the threshold value. Filtering out the invalid pulse oxymetry waveform segment includes eliminating pulse oxymetry waveform segments if 75% of the correlation coefficients for the last 6 seconds are above the threshold value of 0.9. The processor also executes the instruction data signals to determine valid oxygen desaturation data signals. Determining valid desaturation signals comprises labeling oxygen saturation signals below a threshold value for a predetermined time as valid desaturation data. The threshold value is 88% and the predetermined time is 300 seconds. Determining valid desaturation signals comprises eliminating artifacts. Determining valid desaturation signals comprises ignoring desaturation signals below the threshold value that do not reach a peak value.
In still another aspect, the invention is an article that includes a machine-readable medium that stores executable instruction signals for processing pulse oxymetry data signals. The instruction signals cause a machine to record the pulse oxymetry data signals. The pulse oxymetry data signals have a plurality of oxymetry waveforms. The pulse oxymetry data signals correspond to oxygen saturation data signals. The instructions also cause a machine to determine a correlation coefficient between sequential oxymetry waveforms and to identify invalid pulse oxymetry waveforms.
This aspect of the invention may have one or more of the following features. Determining the correlation coefficient includes storing a first pulse oxymetry waveform segment having a first length in a first buffer, copying the first pulse oxymetry waveform segment from the first buffer to a second buffer, copying a second pulse oxymetry waveform segment having a second length to the first buffer, comparing the first length, the second length and a predetermined value, and determining a correlation length related to the first and second lengths and the predetermined value. Determining a correlation length includes taking the minimum of the first length, the second length, and the predetermined value. Determining a correlation coefficient includes determining a correlation coefficient from the first pulse oxymetry waveform segment and the second pulse oxymetry waveform segment, comparing the correlation coefficient to a threshold value, and filtering out an invalid pulse oxymetry waveform segment that has a correlation coefficient below the threshold value. Filtering out the invalid pulse oxymetry waveform segment includes eliminating pulse oxymetry waveform segments if 75% of the correlation coefficients for the last 6 seconds are above the threshold value of 0.9. The instructions also cause a machine to determine valid oxygen desaturation data signals. Determining valid desaturation signals comprises labeling oxygen saturation signals below a threshold value for a predetermined time as valid desaturation data. The threshold value is 88% and the predetermined time is 300 seconds. Determining valid desaturation signals comprises eliminating artifacts. Determining valid desaturation signals comprises ignoring desaturation signals below the threshold value that do not reach a peak value.
Some or all of the aspects of the invention described above may have some or all of the following advantages. The invention makes it impossible to automatically differen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pulse oxymetry data processing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pulse oxymetry data processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse oxymetry data processing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3130163

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.