Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
2000-09-29
2002-08-13
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
active
06434408
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally pertains to patient monitoring using photoplethysmographic devices to generate blood analyte information. More particularly, the invention is directed to an efficient and effective approach for reducing the undesired effects of motion-contaminated data in pulse oximetry devices.
BACKGROUND OF THE INVENTION
In the field of photoplethysmography light signals corresponding with two or more different centered wavelengths may be employed to non-invasively determine various blood analyte concentrations. By way of primary example, blood oxygen saturation (SpO
2
) levels of a patient's arterial blood are monitored in pulse oximeters by measuring the absorption of oxyhemoglobin and reduced hemoglobin using red and infrared light signals. The measured absorption data allows for the calculation of the relative concentrations of reduced hemoglobin and oxyhemoglobin, and therefore SpO
2
levels, since reduced hemoglobin absorbs more light than oxyhemoglobin in the red band and oxyhemoglobin absorbs more light than reduced hemoglobin in the infrared band, and since the absorption relationship of the two analytes in the red and infrared bands is known.
To obtain absorption data, pulse oximeters comprise a probe that is releaseably attached to a patient's appendage (e.g., finger, ear lobe or the nasal septum). The probe directs red and infrared light signals through the appendage, or tissue-under-test. The light signals are provided by one or more sources which are typically disposed in the probe. A portion of the light signals is absorbed by the tissue-under-test and the intensity of the light transmitted through the tissue-under-test is detected, usually by at least one detector that may be also located in the probe. The intensity of an output signal from the detector(s) is utilized to compute SpO
2
levels, most typically via a processor located in a patient monitor interconnected to the probe.
As will be appreciated, pulse oximeters rely on the time-varying absorption of light by a tissue-under-test as it is supplied with pulsating arterial blood. The tissue-under-test may contain a number of non-pulsatile light absorbers, including capillary and venous blood, as well as muscle, connective tissue and bone. Consequently, detector output signals typically contain a large non-pulsatile, or DC, component, and a relatively small pulsatile, or AC, component. It is the small pulsatile, AC component that provides the time-varying absorption information utilized to compute arterial SpO
2
levels.
In this regard, the red and infrared signal portions of pulse oximeter detector output signals each comprise corresponding large DC and relatively small AC components. The red and infrared signal portions have an exponential relationship to their respective incident intensities at the detector(s). As such, the argument of the red and infrared signal portions have a linear relationship and such portions can be filtered and processed to obtain a ratio of processed red and infrared signal components (e.g., comprising their corresponding AC and DC components), from which the concentration of oxyhemoglobin and reduced hemoglobin in the arterial blood may be determined. See, e.g., U.S. Pat. No. 5,934,277. By utilizing additional light signals at different corresponding centered wavelengths it is also known that carboxyhemoglobin and methemoglobin concentrations can be determined. See, e.g., U.S. Pat. No. 5,842,979.
As noted, the pulsatile, AC component of a pulse oximeter detector output signal is relatively small compared to the non-pulsatile DC component. Consequently, the accuracy of analyte measurements can be severely impacted by small amounts of noise. Of particular concern here is noise that contaminates absorption data as a result of undesired variations in the path length of light signals as they pass through the tissue-under-test. Such variations are most typically caused by patient movement of the appendage to which a pulse oximetry probe is attached.
A number of different approaches have been utilized to reduce the deleterious effects of patient motion in pulse oximeters. For example, pulse oximeter probes have been developed to enhance the physical interface between the probe and tissue-under-test, including the development of various clamp type probe configurations and secure wrap-type probe configurations. Further, numerous approaches have been developed for addressing motion contaminated data through data processing techniques. While such processing techniques have achieved a degree of success, they often entail extensive signal processing requirements, thereby contributing to increased device complexity and componentry costs.
SUMMARY OF THE INVENTION
In view of the foregoing, a general objective of the present invention is to provide an improved method and system for addressing motion correction in pulse oximeters.
More particularly, primary objectives of the present invention are to provide for motion correction in pulse oximeters in a manner that is effective and that reduces complexity and component requirements relative to data processing-intensive prior art devices.
The above objectives and additional advantages are realized in the present invention. In this regard, the present inventor has recognized that patient motion can be generally classified into a limited number of motion ranges, or bands, for motion correction purposes. A first type of motion, which may be referred to as “low motion”, corresponds with a range of patient motions that do not have a significant effect on the absorption data comprising a detector output signal. A second type of motion, which may be referred to as “clinical motion”, corresponds with patient motion that primarily affects the AC component of a detector output signal in a relatively predictable manner across a range of motion severity. For such clinical motion, the present inventor has further recognized that a predetermined adjustment factor may be effectively utilized to correct blood analyte measurements, thereby avoiding complex data processing requirements.
The above-noted recognitions provide the basis for a number of improvements to pulse oximetry systems in which a detector provides an output signal indicative of light absorption of a tissue-under-test at each of a plurality of different centered light wavelengths (e.g. centered at red and infrared wavelengths) and which utilize the output signal to obtain blood analyte indicator values for each of a succession of measurements (e.g., periodic measurements corresponding with partially overlapping or non-overlapping measurement data) during a patient monitoring procedure. The inventive method/system provides for the utilization of the detector output signal to obtain a corresponding relative motion estimate value for each measurement. For such purposes, the detector output signal may be processed to yield a different plurality of differential absorption data sets for each measurement, wherein each data set includes a first differential absorption value for light at the first wavelength dA
&lgr;
1
(e.g., infrared light) and a corresponding-in-time second differential absorption value for light at the second wavelength dA
&lgr;
2
(e.g., infrared light). As will be appreciated, the plurality of data sets corresponding with each given measurement are obtained over an associated time period, wherein each successive measurement employs a different successive plurality of data sets, and wherein the data sets employed for successive measurements may or may not partially overlap. By way of primary example, the differential absorption data sets may be obtained via derivative or logarithmic processing of a series of data samples that correspond with a detected infrared portion of a detector output signal and a corresponding-in-time series of data samples that correspond with a detected red light portion of the detector output signal.
For each of the measurements the method/system provides for a determination of whether or not the corresponding
Datex-Ohmeda Inc.
Marsh & Fischmann & Breyfogle LLP
Winakur Eric F.
LandOfFree
Pulse oximetry method and system with improved motion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pulse oximetry method and system with improved motion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse oximetry method and system with improved motion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2904718