Pulse-controlled inverter with variable operating sequence...

Electric power conversion systems – Current conversion – With means to introduce or eliminate frequency components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C363S071000

Reexamination Certificate

active

06256212

ABSTRACT:

BACKGROUND OF THE INVENTION
It is known in relation to wind power installations for them to be equipped with a synchronous generator and to provide an intermediate dc voltage circuit and a pulse inverter connected on the output side thereof as a frequency converter, for the variable-speed operation of the synchronous generator.
FIG. 4
is a circuit diagram illustrating the principle of such a wind power installation, wherein a variable-speed synchronous generator directly driven by the rotor is provided with a frequency converter connected on the output side thereof. In the intermediate dc circuit, firstly the variable-frequency current generated by the generator is rectified and then it is fed into the main network by way of the frequency converter.
The design configuration permits a wide range of speeds of rotation as the intermediate dc circuit provides for complete decoupling of the generator and therewith the rotor speed, from the mains frequency. The wide speed range permits effective wind-controlled operation of the rotor so that, when the design configuration is appropriate, it is possible to achieve a perceptible increase in its aerodynamically governed supply of power. It is almost self-evident that this design totally eliminates the unpleasant dynamic properties that the synchronous generator has in the event of direct connection to the mains network.
Up to a few years ago, a serious objection to the ‘synchronous generator with intermediate dc circuit’ system was the high level of costs and the poor overall level of electrical efficiency. Because all the electrical output flows by way of the converter, the level of efficiency in the case of old installations was basically lower than with the variable-speed generator arrangements which use the converter only in the rotor circuit current of an asynchronous generator. Modern converter technology however has made that objection substantially irrelevant. Nowadays rectifiers and converters are designed whose losses are extremely low so that the overall level of efficiency of that generator system is as in the case of double-feed asynchronous generators.
The variable-speed synchronous generator with intermediate dc circuit is therefore nowadays very widespread in wind power installation technology. In particular modern inverters have made a significant contribution in that respect. In that connection, troublesome harmonics are substantially eliminated with so-called ‘pulse width-modulated (pwm) inverters’. Known pwm-inverters have a constant switching frequency or pulse duty cycle (also referred to as pulse frequency or pulse repetition rate) and the desired sinusoidal form of the alternating current to be fed in is formed by way of the ratio of the switch-on and switch-off times of two switches S
1
and S
2
. The pulse duty cycle within which the switches S
1
and S
2
are switched on and off respectively is constant, as mentioned, and limited by the power loss of the inverter. In known inverters, the losses can be up to 2% or more of the total electrical output power generated, and that can be considerable in the light of the high level of costs of a wind power installation.
If the switching frequency is reduced, the power loss can admittedly be minimised but that causes an increase in the content of troublesome harmonics. If the switching frequency is increased, the power loss rises, as mentioned, but then the harmonics are very substantially eliminated.
DE 32 04 266 discloses a process and an apparatus for the operation of a pulse inverter in which an ac voltage which is synchronous with the desired inverter output voltage is compared to a delta voltage and when the two voltages are identical a change-over switching signal for the inverter switches is produced. To increase the output voltage amplitude the ratio of the control voltage amplitude and the delta voltage amplitude is raised to an over-proportional value.
DE 32 07 440 discloses a process for optimising the voltage control of three-phase pulse inverters, in which a constant dc voltage is supplied, in particular by an intermediate circuit. To optimise the voltage control of the three-phase pulse inverter, that process provides for the production of switching patterns which permit continuous adjustment of the fundamental oscillation voltage with the minimum possible harmonics effect.
Finally, DE 32 30 055 discloses a control assembly for a pulse inverter for producing an output ac voltage with a reference frequency which is predetermined by a frequency control, and a reference amplitude which is predetermined by an amplitude control voltage. The control assembly makes it possible in a simple manner to predetermine for an inverter, an output voltage which is optimised in regard to voltage utilisation and harmonics content.
Therefore the object of the invention is to provide a pulse inverter for a wind power installation, which avoids the above-mentioned disadvantages and overall reduces the power loss with a minimum content of harmonics.
BRIEF SUMMARY OF THE INVENTION
In accordance with the invention, a pulse inverter with variable pulse frequency for producing a sinusoidal alternating current is provided, characterized in that the pulse frequency variation is dependent on the configuration of the alternating current to be produced. The pulse frequency at the passage-through-zero of the alternating current to be produced is a multiple greater than in the region of the maximum amplitude of the alternating current, and the lowest pulse frequency in the region of the maximum amplitude of the alternating current is at least 100 Hz. In a preferred embodiment, the pulse inverter is further characterized in that the pulse frequency in the region in the passage-through-zero of the alternating current to be produced is in the range of about 14-18 kHz, and in the region of the maximum amplitudes of the current it is about 500 Hz to 2 kHz. In a preferred embodiment, a wind power installation is provided with a pulse inverter as described above. Alternatively, a plurality of such wind power installations as described above are connected in mutually parallel relationship.
The invention is based on the idea of moving completely away from a pulse inverter with a static switching frequency or pulse duty cycle, as is known from the state of the art and from
FIG. 2
, and making the switching frequency variable, more specifically in dependence on the alternating current to be generated. In that respect, the switching frequency is at a maximum, that is to say the pulse duty cycle is at a minimum, in the region of the passage-through-zero of the alternating current produced; the switching frequency is at a minimum, that is to say the pulse duty cycle is at a maximum, in the region of the maximum amplitudes of the alternating current.
It was possible to find that, with such a pulse inverter, the switching losses of the power semiconductors can be minimised, which results in a drastic reduction in the power loss, and that the current which is to be fed in has a very high fundamental oscillation content without troublesome harmonics. In addition, as there is not a pronounced fixed switching frequency, no troublesome resonance phenomena occur when a plurality of wind power installations are switched in parallel relationship, which results in a further relative improvement in the fundamental oscillation content. While, with previous pulse inverters, a static switching frequency was accepted and attempts were made to optimise matters in the region of the switching times of the switches S
1
and S
2
in order to reduce the power loss and to minimise the harmonics content, the invention also proposes optimising the switching frequency of the pulse inverter, in which case the switching frequency changes in dependence on the sinusoidal current which is to be fed in. The configuration of the variable switching frequency is shown in simplified form in
FIG. 3
b.


REFERENCES:
patent: 4190882 (1980-02-01), Chevalier et al.
patent: 4520437 (1985-05-01), Boettcher, Jr. et al.
patent: 5095416 (199

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pulse-controlled inverter with variable operating sequence... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pulse-controlled inverter with variable operating sequence..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pulse-controlled inverter with variable operating sequence... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2494415

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.