Pull stem hi-lite pin with pull groove for swaging collars

Metal working – Method of mechanical manufacture – Assembling or joining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S525060, C411S043000, C411S361000

Reexamination Certificate

active

06665922

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to fasteners, and more particularly relates to pull stem fasteners which can have either a collar swaged onto them or a female threaded device, such as a threaded nut or a threaded collar, torqued onto them.
2. Description of the Related Art
Fasteners of the type used in the aerospace industry, include those that are installed by a swaging operation and those that have a female threaded device, such as a threaded nut or a threaded collar, torqued onto them. Swaging is a process for reducing the cross-sectional area of a part by using a hammer-type or ram-type of tool to apply compressive forces to the outside surface of the part. Swaging operations for a fastener include sliding a swage collar over a portion of a fastener having a series of lock grooves. The swage collar includes an inside surface which is typically smooth and sufficiently large to fit over the lock grooves of the fastener with a clearance fit. The swage collar also includes sufficient thickness so that when the swaging operation is performed, material from the swage collar can be forced into the lock grooves on the fastener, thereby locking the swage collar to the fastener. Since the swage collar material must be forced into the lock grooves, the swage collar material is typically softer than the material incorporated in the lock grooves.
Fasteners which are installed by a swaging operation generally include those having a pull stem portion and those which do not have a pull stem portion. Fasteners having the pull stem portion include a pin having an enlarged protruding head at a proximal end of the fastener. The head includes a distal surface which contacts a surface of a workpiece. Distal the head is a smooth shank portion which is adapted to be received within substantially aligned holes within a series of workpieces. The smooth shank portion may provide either a clearance fit or an interference fit with the aligned holes in the workpiece. Distal the smooth shank portion is a lock shank portion having a plurality of circumferentially extending annular lock grooves. Alternatively, some pins include lock grooves having a helical pattern rather than the annular pattern. The lock grooves are configured to engage a swage collar through a swage operation. Distal the lock shank portion is a pull stem portion which may be separated from the lock shank portion by a breakneck groove.
To install the pin, the pull stem portion is inserted into the aligned holes within the series of workpieces until it protrudes from the hole on the opposite side of the workpiece. For pins having an interference fit at the smooth shank portion, a tool is used to pull the smooth shank portion into the hole by pulling on the pull stem portion until a distal surface on the head contacts a surface of the workpiece. Having an interference fit, the pin is retained within the workpiece by compressive forces from at least one of the aligned holes applied to the smooth shank portion. At this point, the tool may continue to pull on the pull stem portion until a sufficient tensile force is attained to sever the pull stem portion from the remainder of the pin at the breakneck groove. Then the swage collar may be slid over the lock shank portion and swaged into place.
To install a pin having a smooth shank portion which provides a clearance fit, the pull stem portion is inserted into the aligned holes and advanced through the hole until the distal surface of the head contacts a surface of the workpiece. The swage collar may then be slid over the lock shank portion preparatory to the swaging operation. The tool may apply a light tensile load on the pull stem portion during the swaging operation to hold the pin in place. Alternatively, to have the pin remain in tension after the swaging operation, the tool may apply a relatively high tensile load on the pull stem portion during the swaging operation, thereby locking the fastener in a preloaded condition. After the swage collar is swaged onto the lock grooves, the pull stem portion may be pulled in tension further until it severs from the remainder of the pin at the breakneck groove.
Fasteners which are installed by a swaging operation that do not include a pull stem portion include a pin having an enlarged protruding head, a smooth shank portion and a lock shank portion. As with the fasteners which include a pull stem portion, the smooth shank portion is adapted to be received within aligned holes within a series of workpieces and may provide either a clearance fit or an interference fit. Also similar to the fasteners which include the pull stem portion, the lock shank portion may include either a plurality of circumferentially extending annular lock grooves or lock grooves having a helical pattern.
To install a fastener which includes a smooth shank portion having an interference fit and no pull stem portion, the lock shank portion is inserted into the aligned holes within the series of workpieces from one side until it protrudes from the opposite side of the workpieces. A tool may be used to pull the smooth shank portion into the aligned holes by pulling on the lock shank portion until the distal surface of the head contacts the workpiece. The pin is retained within the workpiece by compressive forces of at least one of the aligned holes applied to the smooth shank portion. With the pin thus retained, the swage collar may be slipped over the lock grooves and a tool may then swage the collar onto the lock grooves of the lock shank portion.
Fasteners which include a smooth shank portion having a clearance fit and no pull stem portion may include a threaded hole on a surface at the distal end of the fastener, or some other means through which the tool may engage the lock shank portion of the pin in order to retain the pin for the swage operation. To install such a fastener, the lock shank portion is inserted into the aligned holes within the series of workpieces from one side until it protrudes from the opposite side of the workpieces and the distal surface of the head contacts the workpiece. The swage collar may then be slid over the lock shank portion preparatory to the swaging operation. The tool may apply a light tensile load to the pin through the threaded hole or other tool engagement means during the swaging operation to hold the pin in place. Alternatively, to have the pin remain in tension after the swaging operation, the tool may apply a relatively high tensile load through the threaded bole or other engagement means during the swaging operation, thereby locking the fastener in a preloaded condition.
Fasteners which are installed by having a threaded nut or a threaded collar torqued onto them also include those having a pull stem portion and those which do not have a pull stem portion. Fasteners having the pull stem portion include a pin having an enlarged protruding head at a proximal end of the fastener and having a distal surface which contacts a surface of a workpiece. Adjacent the head is a smooth shank portion which is adapted to be received within the aligned holes within the series of workpieces. The smooth shank portion may provide either a clearance fit or an interference fit with the aligned holes in the workpiece. Distal the smooth shank portion is a threaded shank portion which may include a standard thread for receiving a threaded nut or a threaded collar. Distal the threaded shank portion is a pull stem portion which may be separated from the threaded shank portion by a breakneck groove.
Installing the pin which is configured to have a threaded nut or a threaded collar torqued onto it and having a pull stem portion is similar to installing the pin which is configured to be installed through a swaging operation which includes a pull stem portion. The pull stem portion is inserted into the aligned holes within the workpiece until it protrudes from the opposite side of the workpiece. For pins having an interference fit at the smooth shank portion, a tool is used to pull the smooth shank portio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pull stem hi-lite pin with pull groove for swaging collars does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pull stem hi-lite pin with pull groove for swaging collars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pull stem hi-lite pin with pull groove for swaging collars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3109980

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.