Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues
Reexamination Certificate
1995-06-07
2001-01-09
Navarro, Albert (Department: 1645)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
C530S300000
Reexamination Certificate
active
06172186
ABSTRACT:
FIELD OF INVENTION
This invention relates to DNA sequences encoding pseudorabies virus glycoproteins and polypeptides related thereto. These DNA sequences are useful for screening animals to determine whether they are infected with PRV and also for expressing the glycoproteins encoded thereby.
BACKGROUND OF THE INVENTION
Pseudorabies virus (PRV) is a disease which infects many species of animals worldwide. PRV infections are variously called infectious Bulbar paralysis, Aujeszky's disease, and mad itch. Infections are known in important domestic animals such as swine, cattle, dogs, cats, sheep, rats and mink. The host range is very broad and includes most mammals and, experimentally at least, many kinds of birds (for a detailed list of hosts, see D. P. Gustafson, “Pseudo-rabies”, in Diseases of Swine, 5th ed., A. D. Leman et al., eds., (1981)). For most infected animals the disease is fatal. Adult swine and possibly rats, however, are not killed by the disease and are therefore carriers.
Populations of swine are particularly susceptible to PRV. Although the adult swine rarely show symptoms or die from the disease, piglets become acutely ill when infected and death usually ensues in 24 to 48 hours often without specific clinical signs (T. C. Jones and R. D. Hunt, Veterinary Pathology, 5th ed. , Lea & Febiger (1983)).
PRV vaccines have been produced by a variety of techniques and vaccination in endemic areas of Europe has been practiced for more than 15 years. Losses have been reduced by vaccination, but vaccination has maintained the virus in the environment. No vaccine has been produced that will prevent infection. Vaccinated animals that are exposed to virulent virus survive the infection and then shed more virulent virus. Vaccinated animals may therefore harbor a latent infection that can flare up again. (See, D. P. Gustafson, supra).
Live attenuated and inactivated vaccines for PRV are available commercially in the United States and have been approved by the USDA (See, C. E. Aronson, ed. , Veterinary Pharmaceuticals & Biologicals, (1983)).
Because adult swine are carriers of PRV, many states have instituted screening programs to detect infected animals. DNA/DNA hybridization can be used to diagnose actively infected animals utilizing the DNA sequence of the instant invention. Some of the PRV glycoproteins of the present invention are also useful in producing diagnostics for PRV infections and also to produce vaccines against PRV.
PRV is a herpesvirus. The herpesviruses generally are among the most complex of animal viruses. Their genomes encode at least 50 virus specific proteins and contain upwards of 150,000 nucleotides. Among the most immunologically reactive proteins of herpesviruses are the glycoproteins found, among other places, in virion membranes and the membranes of infected cells. The literature on PRV glycoproteins refers to at least four viral glycoproteins (T. Ben-Porat and A. S. Kaplan, Virology, 41, pp. 265-73 (1970); A. S. Kaplan and T. Ben-Porat, Proc. Natl. Acad. Sci. USA, 66, pp. 799-806 (1970)).
INFORMATION DISCLOSURE
M. W. Wathen and L. K. Wathen, J. Virol., 51, pp. 57-62 (1984) refer to a PRV containing a mutation in a viral glycoprotein (gp50) and a method for selecting the mutant utilizing neutralizing monoclonal antibody directed against gp50. Wathen and Wathen also indicate that a monoclonal antibody directed against gp50 is a strong neutralizer of PRV, with or without the aid of complement, and that polyvalent immune serum is highly reactive against gp50, therefore concluding that gp50 may be one of the important PRV immunogens. On the other hand, it has been reported that monoclonal antibodies that react with the 98,000 MW envelope glycoprotein neutralize PRV infectivity but that monoclonal antibodies directed against some of the other membrane glycoproteins have very little neutralizing activity (H. Hampl, et al., J. Virol., 52, pp. 583-90 (1984); and T. Ben-Porat and A. S. Kaplan, “Molecular Biology of Pseudorabies Virus”, in B. Roizman ed., The Herpesviruses, 3, pp. 105-73 (1984)).
L. M. K. Wathen, et al., Virus Research, 4, pp. 19-29 (1985) refer to the production and characterization of monoclonal antibodies directed against PRV glycoproteins identified as gp50 and gp83 and their use for passively immunizing mice against PRV infection.
A. K. Robbins, et al., “Localization of a Pseudorabies Virus Glycoprotein Gene Using an
E. coli
Expression Plasmid Library”, in Herpesvirus, pp. 551-61 (1984), refer to the construction of a library of
E. coli
plasmids containing PRV DNA. They also refer to the identification of a PRV gene that encodes glycoproteins of 74,000 and 92,000 MW. They do not refer to the glycoproteins of the instant invention.
A. K. Robbins, et al., European patent application No. 85400704.4 (publication No. 0 162 738) refers to the isolation, cloning and expression of PRV glycoproteins identified as gII and gIII. They do not refer to the PRV glycoproteins of the instant invention.
T. C. Mettenleiter, et al., “Mapping of the Structural Gene of Pseudorabies Virus Glycoprotein A and Identification of Two Non-Glycosylated Precursor Polypeptides”, J. Virol., 53, pp. 52-57 (1985), refer to the mapping of the coding region of glycoprotein gA (which they equate with gI) to the BamHI 7 fragment of PRV DNA. They also state that the BamHI 7 fragment codes for at least three other viral proteins of 65K, 60K, and 40K MW. They do not disclose or suggest the DNA sequence encoding the glycoproteins of the instant invention or the production of such polypeptides by recombinant DNA methods.
B. Lomniczi, et al. , “Deletions in the Genomes of Pseudorabies Virus Vaccine Strains and Existence of Four Isomers of the Genomes”, J. Virol., 49, pp. 970-79 (1984), refer to PRV vaccine strains that have deletions in the unique short sequence between 0.855 and 0.882 map units. This is in the vicinity of the gI gene. T. C. Metten-leiter, et al., “Pseudorabies Virus Avirulent Strains Fail to Express a Major Glycoprotein”, J. Virol., 56, pp. 307-11 (1985), demonstrated that three commercial PRV vaccine strains lack glycoprotein gI. We have also found recently that the Bartha vaccine strain contains a deletion for most of the gp63 gene.
T. J. Rea et al., J. Virol., 54, pp. 21-29 (1985), refers to the mapping and the sequencing of the gene for the PRV glycoprotein that accumulates in the medium of infected cells (gX). Included among the flanking sequences of the gX gene shown therein is a small portion of the gp50 sequence, specifically beginning at base 1682 of FIG. 6 therein. However, this sequence was not identified as the gp50 sequence. Furthermore, there are errors in the sequence published by Rea et al. Bases 1586 and 1603 should be deleted. Bases should be inserted between bases 1708 and 1709, bases 1737 and 1738, bases 1743 and 1744 and bases 1753 and 1754. The consequence of these errors in the published partial sequence for gp50 is a frameshift. Translation of the open reading frame beginning at the AUG start site would give an incorrect amino acid sequence for the gp50 glycoprotein.
European published patent application 0 133 200 refers to a diagnostic antigenic factor to be used together with certain lectin—bound PRV glycoprotein subunit vaccines to distinguish carriers and noncarriers of PRV.
SUMMARY OF INVENTION
The present invention provides recombinant DNA molecules comprising DNA sequences encoding polypeptides displaying PRV glycoprotein antigenicity.
More particularly, the present invention provides host cells transformed with recombinant DNA molecules comprising the DNA sequences set forth in Charts A, B, and C, and fragments thereof.
The present invention also provides polypeptides expressed by hosts transformed with recombinant DNA molecules comprising DNA sequences of the formulas set forth in Charts A, B, and C, and immunologically functional equivalents and immunogenic fragments and derivatives of the polypeptides.
More particularly, the present invention provides polypeptides having the formulas set forth in Charts A, B, and C, i
Petrovskis Erik Aivars
Post Leonard Edwin
Timmins James G.
Darnley James D.
Navarro Albert
Pharmacia & Upjohn Company
The Upjohn Company
LandOfFree
Pseudorabies virus protein does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pseudorabies virus protein, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pseudorabies virus protein will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2496851