Proximity measuring apparatus

Communications: directive radio wave systems and devices (e.g. – Return signal controls external device – Radar mounted on and controls land vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S071000, C342S072000, C342S042000, C342S125000, C342S145000, C340S903000, C340S435000

Reexamination Certificate

active

06614387

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a proximity measuring apparatus, and more particularly but not exclusively to an apparatus for incorporation into road vehicles for measuring their mutual proximity.
2. Discussion of Prior Art
Proximity measuring apparatus are well known. They are incorporated, for example, into vehicles for providing information regarding their positions relative to one another.
One example of a proximity measuring apparatus is a road vehicle Doppler radar system. In use, the system is mounted onto a road vehicle and emits interrogating radiation towards other road vehicles which reflect the radiation as echo radiation back to the system for analysis therein to determine collision risk of the other vehicles to the system. A proximity measuring apparatus implemented as a microwave Doppler radar anticollision system is described in a United Kingdom patent application GB 96 02250.4.
A number of problems are encountered with the system described in the patent application GB 96 02250.4, namely:
(i) information available within other vehicles reflecting the interrogating radiation emitted from the system is not communicated back to the system; such information is potentially of benefit for more accurately determining whether or not the other vehicles represent a genuine collision hazard to the system, for example a vehicle in front is decelerating or its engine has stalled;
(ii) when a plurality of vehicles each incorporate the system, there is a risk of interference between several the vehicles when operating simultaneously within range of one another; and
(iii) spurious multipath reflections from roadside stationary objects give rise to complex and potentially misleading echo radiation to the system.
The system described in GB 96 022509 attempts to alleviate the problem in (ii) above by making frequency of emitted radiation dependent upon orientation of the system, the orientation being determined relative to the earth's magnetic poles using a mechanical or electronic compass. However, this is potentially unreliable, especially when there are numerous vehicles each incorporating and using the system within range of one another. For example, a problem arises when a series of vehicles each incorporating the system travel in convoy in an identical direction; because the systems installed in the vehicles are orientated in an identical bearing, their systems operate at identical frequencies such that mutual interaction of the systems can occur giving rise to a risk of erroneous proximity measurement. Moreover, on account of the number of vehicles presently in use in the world, it is not feasible to allocate a unique radiation frequency band for each vehicle; problems of interference and interaction between systems in the prior art cannot therefore be ameliorated.
It is well known that radiation emitted from a source can be modulated with a signature code corresponding to the source; this allows the source to be identified when the radiation is subsequently received by demodulating it to extract its signature code. Such radiation modulation is frequently employed in radar and communication systems, for example in mobile telephones where each telephone is identified by a corresponding unique apparatus number.
A problem arises in a scenario where;
(i) there are numerous mobile sources of radiation within radiation receiving range of one another; and
(ii) the sources are constrained to operate at identical frequencies on account of limited available allocated electromagnetic radiation spectrum.
In the scenario, each source must have associated with it a corresponding unique signature code for it to be uniquely identifiable. When there are several million sources, relatively longer signature codes are required for distinguishing the numerous sources from one another. There arises then a further problem that transmission time to transmit the relatively longer codes affects rapidity with which sources can communicate information to one another; this is particularly relevant when signature code transmission occupies a relatively larger proportion of total radiation transmission time.
When the scenario relates to proximity measurement apparatus installed into road vehicles, each road vehicle requires a unique corresponding signature code for its apparatus because any combination of road vehicles in close mutual proximity can potentially occur in practice. There are presently many million road vehicles in use on roads in the world, hence many million unique signature codes are required to reduce a risk of potential confusion between signature codes and associated collision risk.
Multipath reflection from stationary objects in a road environment gives rise to a further problem when proximity measurement apparatus are used. Such multipath reflection can result in corruption of transmitted signature codes resulting in erroneous detection of a potentially dangerous collision event. It is therefore necessary for such systems to employ signature codes which are robust to corruption from multipath reflection and other sources of interfering radiation.
Signature codes are conventionally made- more robust by incorporating error correction data within them, for example parity bits, or by making the codes relatively longer by incorporating redundancy into the code. This results in a problem that their transmission duration is increased which limits code transmission repetition rate; this results in less frequent updating of proximity measurement for use in collision risk assessment, thereby increasing risk of collision.
There are therefore conflicting constraints of providing a large number of unique signature codes which each have a relatively short length and yet are robust to corruption arising from, for example, multipath interference. This represents a problem which the invention seeks to address.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a proximity detecting apparatus which alleviates at least one of the problems mentioned above and provides, for example,. more reliable collision warning.
According to the present invention, a proximity measuring apparatus is provided incorporating:
(a) transponding means for receiving interrogating radiation and emitting return radiation in response thereto; and
(b) interrogating means for generating and emitting the interrogating radiation and for receiving the return radiation for determining proximity of the interrogating means relative to the transponding means, characterised in that
(c) the interrogating means is adapted to encode the interrogating radiation with a signature code comprising a plurality of concatenated data sequences;
(d) the transponding means is adapted to receive the interrogating radiation, and to encode the return radiation with the signature code, thereby enabling the interrogating means to associate the interrogating radiation with the return radiation.
The invention provides the advantage that the signature code is relatively short and that a relatively large number of unique signature code combinations with desirable correlation characteristics is possible.
The transponding means of a first vehicle may discriminate between its interrogating radiation and return radiation emitted in response thereto from interrogating radiation and corresponding return radiation of other vehicles incorporating the apparatus on the basis of signature code used. This advantage arises because each apparatus employs a signature code in its interrogating radiation and its corresponding return radiation which is unique to itself.
The apparatus is mountable, for example, into road vehicles, one apparatus for each vehicle. This enables the apparatus in a first vehicle to identify when it is likely to collide with other vehicles and provide warning to a driver of the first vehicle that corrective action is needed to avoid a collision.
For explaining the invention, a pseudo-random sequence of data bits is defined as a sequence of data bits whose values vary in a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Proximity measuring apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Proximity measuring apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proximity measuring apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3005409

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.