Proximity fuze

Ammunition and explosives – Igniting devices and systems – Ignition or detonation circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C102S215000, C342S068000

Reexamination Certificate

active

06834591

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an improved proximity fuze for a tube launched projectile carrying a payload.
2. Discussion of the Prior Art
The use of a fuze on a payload carrying projectile has two main functions. Firstly, it protects a handler of the projectile from inadvertent detonation or activation of the payload from when the projectile is manufactured until it is at least several meters from the site from which is was launched. Secondly, it initiates detonation or activation of the payload at a range from a target or from the ground, which range is appropriate to the function of the payload. The appropriate range may be contact with the target, after contact with the target, time from launch or proximity to the target. It is the latter type of fuze, a proximity fuze, to which the present invention relates.
Current proximity fuzes use a sensing technique known as “doppler” proximity sensing. This technique requires a continuous constant wavelength radio frequency signal to be transmitted by the fuze such that when the projectile approaches its target, the fuze starts to receive its own transmitted signal reflected back from the target. This return or echo signal then interferes with the transmitted signal from the fuze in a sequence of constructive and destructive interference as the projectile gets closer to the target. For a particular reflectivity of target and given that the power of the radio signal transmitted by the fuze and the gain of the receiver which detects the return signal are set, the distance of the projectile from the target when the fuze first starts to detect its own returned transmitted signal can be predicted. Based on this prediction of the proximity of the projectile to the target when the return signal is first detected by the fuze, the fuze can be made to count through successive cycles of constructive interference. The number of cycles of constructive interference that the fuze counts before it activates the payload can thus be set to fix the proximity of the fuze to the target when the fuze activates the payload.
One problem with this type of fuze is that different targets will have different reflectivities and so the distance from the target at which the fuze first starts to receive a reflected signal will vary from target to target. Accordingly, the distance from the target at which the payload is activated, ie. after the predetermined number of cycles of constructive interference have been counted, will vary from target to target. This reduces the accuracy of such “doppler” type proximity fuzes. This lack of accuracy is generally overcome in the field by firing a first projectile and observing its proximity to the target when it is activated. Then the number of cycles of constructive interference which are counted before activation can be adjusted for subsequently fired projectiles directed at the same target. However, an increasing number of potential applications require a higher accuracy fuze without the need for adjustment prior to use.
A further reduction in accuracy is caused because the frequency of the radio signal transmitted by the fuze is not generally as stable as required and so the timing of successive cycles of constructive interference will not be accurate. Further inaccuracies can be added because the ability of the fuze to detect cycles of constructive interference is dependent on background noise levels. Finally, the simple algorithm used by these “doppler” type proximity fuzes and the continuous transmission at one frequency can make them relatively easy to detect and to cause the fuze to malfunction, either by accident, eg. if the ammunition travels through a radar beam or by active sensor jamming measures taken by the enemy.
The aim of the present invention is to provide an improved proximity fuze which can overcome at least some of the problems discussed above. In particular the present invention aims to provide a more accurate proximity fuze which is more difficult to defeat by active sensor jamming measures than the currently used “doppler” type fuzes.
SUMMARY OF THE INVENTION
According to a first aspect of the present invention there is provided a proximity fuze for use in a tube launched projectile carrying a payload, comprising:
oscillator means for generating a radio frequency signal which has a varying frequency,
a single antenna means for transmitting the radio frequency signal and for receiving an echo of the radio frequency signal,
first signal processing means for generating a range signal corresponding to the time delay between the transmission of the radio frequency signal and the receipt of the echo signal,
second signal processing means for comparing the range signal with a reference signal and depending on the result of the comparison generating an activation signal for activating the payload,
wherein a directional coupling means is used for coupling the radio frequency signal from the oscillator means to the antenna means and to the signal processing means and for coupling the echo signal from the antenna means to the signal processing means, and wherein the second signal processing means comprises a threshold detector, a peak detector and a comparator, the threshold detector being for allowing the comparator to utilise the output from the peak detector only once the range signal has reached a predetermined magnitude.
The transmitted signal is reflected by the target for the projectile or by the ground and the antenna means receives an echo signal, ie. the component of the transmitted radio frequency signal which is reflected off the ground or the target. As the transmitted radio frequency signal has a time varying property, this property of the received signal will be different from that of the transmitted signal by an amount dependant on the rate at which the property of the radio frequency signal varies and the time it takes for the radio frequency signal to travel between the antenna to the target or the ground and back. As the time it takes for the radio frequency signal to travel between the antenna to the target or the ground and back is directly related to the distance or proximity of the antenna (and thus the projectile) from the ground or the target, the difference between the relevant property of the transmitted and received signal can be used to generate a range signal indicative of the distance between the projectile and the ground or target. This range signal can then be compared with a reference signal having the value that the range signal will take when the projectile is in the correct proximity to be activated. When the range signal and the reference signal are the same an activation signal is generated to activate the payload of the projectile, which could be, for example, high explosives, obscurance material or a lighting flare.
The fuze according to the present invention does not rely on the attenuation in amplitude of the echo signal as compared to the transmitted signal as an indicator of the distance it has travelled to reach the target (or the ground) and to return. Therefore, the ranges calculated in the fuze according to the present invention are not dependent on the reflectivity of the target (or the ground). Provided the echo signal has an amplitude sufficient to be received by the antenna means then the comparison of the time varying property of the transmitted signal and the echo signal can be used to generate an accurate indication of the range of the projectile from the target (or the ground).
In a first preferred embodiment the amplitude of the echo signal does not alter the calculated range, and the radio frequency signal is transmitted continuously. This preferred embodiment is suitable for use at relatively close proximities, such as 0.5 m to 500 m.
The signal processing means of the fuze preferably comprises mixing means for mixing a part of the transmitted signal with a part of the echo signal to generate a range signal comprising an intermediate frequency signal with a frequency corresponding to the diffe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Proximity fuze does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Proximity fuze, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proximity fuze will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315992

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.