Electrical transmission or interconnection systems – Plural supply circuits or sources – Substitute or emergency source
Reexamination Certificate
1999-10-08
2001-07-17
Fleming, Fritz (Department: 2836)
Electrical transmission or interconnection systems
Plural supply circuits or sources
Substitute or emergency source
C307S066000, C713S324000
Reexamination Certificate
active
06262493
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to the monitoring and replacement of field replaceable units (FRUs) for electronic equipment, for example for a telecommunications or other application where high standards are set and where the unit may, for example, be remote from a service center and the replacement may need to be effected by non-skilled personnel.
FRUs can be used in many different systems. They find particular but not exclusive application to computer systems, for example to fault tolerant computer systems where it is desirable to be able readily to replace units which have developed a fault or have been superseded by a more recent version.
Examples of FRUs for such a system can include, for example, a CPU, a PCI card, power supply units (PSUs), a motherboard, or any other system components. One FRU, for example a field replaceable card, can include hardware for implementing several devices (e.g. a multiple Ethernet adapter, or a SCSI adapter with an Ethernet adapter).
It is known to provide FRUs with non-volatile memory (e.g. EEPROMs), which can contain information relating to the FRU. In a known system, FRUs can include basic FRU identification information in the non-volatile memory.
It is also known to provide a system management suite, collectively known as a configuration management system (CMS) which manages the FRUs, other devices and system resources using objects to represent the FRUs, devices and other system resources. An object forms a particular instance of a CMS class, which is defined by a CMS definition (CMSDEF).
For example, a CAF (Console and Fans unit) CMSDEF defines the CAF CMS class of which the object CAF
—
1 is an instance that represents a particular CAF FRU. The CAF 1 object may have an attribute called LOCATION having the value A_CAF in the chassis of the computer system.
In order correctly to manage the FRUs, the CMS requires access to the non-volatile memory in the FRUs. In order to gain access to the non-volatile memory in the FRUs, it is necessary that power is supplied to the FRUs. However, this conflicts with safety requirements relating to telecommunications equipment which require that when a unit is faulty, for example a FRU, it is necessary to power down that unit. For example, an electrical fault can cause a fuse blow, isolating the FRU electrically. In such a situation, access to the memory storing the data about the FRU can be lost, making identification and/or diagnosis of the fault more difficult, or impossible.
Accordingly, present invention seeks to improve fault identification and/or diagnosis for a FRU provided with a power isolation mechanism.
SUMMARY OF THE INVENTION
Particular and preferred aspects of the invention are set out in the accompanying independent and dependent claims. Combinations of features from the dependent claims may be combined with features of the independent claims as appropriate and not merely as explicitly set out in the claims.
In accordance with a first aspect of the invention, there is provided a power sub-system of electronic equipment for controlling the supply of power to a field replaceable unit. The power sub-system includes a main power controller that supplies main power to at least a first component of the field replaceable unit, and a standby power controller that supplies standby power to at least a second component of the field replaceable unit. The main power controller is operable to switch off the supply of main power to a first component in response to the detection of a fault, whereas the standby power controller maintains the supply of standby power to the second component.
By providing separate power controllers for main and standby power, it is possible to maintain power to one of more selected components of the FRU in the event of a fault that requires main power to the FRU to be cut. In an embodiment of the invention, the second component forms storage for parameters identifying the FRU and possibly also for information for analysing the status of the FRU.
The standby power controller can be configured to switch off the supply of standby power to the second component in response to a first change in state of an interlock signal that is indicative of the field replaceable unit being released. It can further be operable to switch on the supply of standby power to the second component in response to a subsequent, second, change in state of an interlock signal indicative of the field replaceable unit being replaced. In this manner, automatic power control can be provided to cut standby power when a service engineer releases the FRU for removal and restores standby power when the FRU is secured following replacement.
Main power can also be restored to the first component by the main power controller in response to the first change in state of the interlock signal indicative of the field replaceable unit being released, followed by a second change of state of the interlock signal indicative of a field replaceable unit being secured in position.
In an embodiment of the invention, the main power controller comprises a first logic circuit and the standby power controller comprises a second logic circuit. However, in other embodiments, these functions could be provided using a suitably programmed microcontroller or microprocessor.
Further, in an embodiment of the invention, the main power controller can include a sensor circuit responsive to an overcurrent on a main power line to generate a signal, the first logic circuit being connected to the sensor circuit to receive the signal therefrom in response to an overcurrent on the main power line.
An interlock signal line can carry the interlock signal when the field replaceable unit is locked in the electronic equipment. The interlock signal can be represented by a predetermined potential (e.g., ground) on the interlock signal line. Debounce logic can be connected between the interlock signal line and the power controller for debouncing the interlock signal prior to its supply to the main power controller. This is to avoid switch bounce being interpreted incorrectly as a change in the interlock signal. However, as the logic controlling the supply of standby power is simpler, the standby power controller is directly connected to the interlock signal.
A connector arrangement can connect a main power line and a standby power line to corresponding main and standby power line, respectively, of the field replaceable unit.
In accordance with another aspect of the invention, there can be provided electronic equipment including a power sub-system for controlling the supply of power to a field replaceable unit, the power sub-system comprising a main power controller that supplies main power to at least a first component of the field replaceable unit, and a standby power controller that supplies standby power to at least a second component of the field replaceable unit, wherein the main power controller is operable to switch off the supply of main power to a first component in response to the detection of a fault whereas the standby power controller maintains the supply of standby power to the second component.
The FRU can be a computer system component. The computer system can be a rack-mounted computer system, for example, a fault-tolerant computer system. A power converter could be the first component the FRU and a memory device could be the second component of the FRU.
The FRU can include an interlock mechanism for locking the field replaceable unit in the electronic equipment, an interlock switch operated by the interlock mechanism and an interlock signal line, the interlock switch connecting the interlock line to a source of a predetermined potential (e.g., ground) when the interlock mechanism locks the field replaceable unit in the electronic equipment. It is the signal on the interlock signal line that forms the interlock signal to which the power controllers respond. In one particular example the FRU is a PCI card carrier assembly, with the power converter being operable to supply a selectable one of a plurality of different vo
Conley Rose & Tayon PC
Fleming Fritz
Kivlin B. Noäl
Sun Microsystems Inc.
LandOfFree
Providing standby power to field replaceable units for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Providing standby power to field replaceable units for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Providing standby power to field replaceable units for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2535528