Providing a conduit for an instrumentation line

Wells – Conduit wall or specific conduit end structure – Flexible tube or cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S242600, C166S375000

Reexamination Certificate

active

06668921

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to deep wells, which are drilled into the ground for extraction of fluid or gaseous materials. The invention particularly relates to oil, gas or hydrocarbon wells. Most particularly, the invention relates to means for providing instrumentation in the depths of an oil, gas or production well.
BACKGROUND
In drilling an oil well, it is customary to commence with a wellhead, which provides a steel surface casing, generally around 46 cm (18 plus inches) in diameter. As drilling proceeds, successive sections of a steel intermediate casing are inserted, stage by stage, into the well bore, set in place with concrete slurry, and residual, set, internal concrete slurry plugs drilled out to continue the well bore down until a production zone, where hydrocarbon is found to be present in extractable quantities, is reached. Once contact has been made with the production zone, production tubing, of smaller diameter than the intermediate casing, is introduced down to the production zone, ready to extract hydrocarbon. A perforated production liner, intermediate in diameter (around 18 cm, otherwise 7″ or smaller) between that of the production tubing and that of the intermediate casing, may be extended beyond the end of the intermediate casing and the production tubing, allowing ingress of hydrocarbon into the production liner. The production liner allows hydrocarbon to flow into the production tubing but the intermediate casing is plugged, or sealed using a packer, against ingress of hydrocarbon from the production liner.
Fibre optic sensor line has been used, for some years, in the oil industry, to collect data from oil wells. The data collected primarily relates to temperature. Techniques exist whereby transmitted and backscattered light in a fibre optic line can be analysed to extract much useful information. Such techniques are not part of this invention. The instant invention is concerned, rather, with the introduction of a fibre optic line into an oil well.
Well data is of great economic importance, allowing the operator to give more effective surveillance to the well and thereby to enhance the productivity of the well. In these days of slimmer margins of economic viability in oil wells, and falling reserves, such data may be vital for the economy of the oil industry and, by extension, to the greater economy of the world, as a whole.
The fibre optic line is extremely fragile. It has a diameter, even with coating and sleeving, of no more than one millimetre. Its internal reflective properties can be compromised by surface contaminants. Being made of glass, it can shatter and break. It has a minimum radius of curvature below, which it certainly breaks.
The environment in an oil well is extremely hostile. Drill bits, capable of penetrating hard rock, are lowered into the well and rotated with great torque by heavy steel tubes. Heavy steel casings are lowered into the drill shaft to line the shaft. The drill shaft is filled with cement and mud slurries. Residual cement plugs, once a slurry has set, are drilled out. An oil well represents a very hazardous environment for a fibre optic line.
In order to protect the fibre optic line from mechanical damage or contamination, it is customary to use control line. Control line, in the oil industry, is remarkably like metal hydraulic tubing, as used in industrial, agricultural and building site machinery. It is tough, usually 0.6 cm (¼ inch) in outside diameter, able to sustain high pressures up to 15000 psi (100 Mega Pascals), thermally conductive, can be joined in lengths by couplings, and provides a protected, clear channel down which a fibre optic line or electrical cable can be fed.
Installing a continuous length of fibre optic line, in the current art, requires the use of a continuous length of control line. Currently, to investigate an oil well, lengths of control line are strapped to the outside of a string of steel casings which are passes down the well to reach and to cross the zone of interest, where measurements are required or desirable. Alternatively, the control line is run inside a protective oilfield tubing string, on the inside of the well bore, down to and across the zone of interest.
Should the zone of interest turn out to be the required producing interval, it is customary to complete an oil well by topping off the zone of interest with a set concrete casing and inserting a perforated production liner into and through the zone of interest. This creates a well with two separated strings of pipes, albeit concentric.
The completion of a well with a set concrete casing and a production liner precludes running a single length of fibre optic line, inside control line, down to and across the zone of interest, while maintaining the fibre optic line external to the well bore. The plug, through which the production liner passes, blocks off the end of the intermediate casing run, preventing the fibre optic line from passing out of the end of the intermediate casing and isolating the inside of the intermediate casing from the zone of interest.
When stimulating a well, a substantial advantage is gained by being able to gather distributed temperature data, without interfering with the near well bore area and without data being masked by the presence of a hydraulically isolated zone. When fibre optic line is installed on the inside of the well bore, the well bore becomes inaccessible to other tools. The control line and the (optional) protective tubing string reduce the room available for the tools. The fragility, even of a protective tubing string and control line protected fibre optic line, and the loss of room, mean that ancillary tools cannot be inserted or operated down a well bore where a fibre optic installation is maintained. Before ancillary tools are run down the well bore, it is necessary first to retrieve the fibre optic line. Stimulation of the well can then take place, or tools run, but without the gathering of data that could have a significant impact on well productivity.
With the fibre optic line in the well bore, any fluid flowing in the well bore can affect the fibre optic line. Its temperature readings no longer reflect, with accuracy, the temperature of the rock external to the well bore, but are altered or dominated by the fluid in the well bore.
An internally installed and maintained fibre optic line, in a string of protective tubing (pipes), restricts the flow of the well and requires a larger diameter well bore to accommodate the string of protective tubing/pipes and allow adequate flow. Well bores cost a great deal of money to create, and the price rises steeply with their diameter.
It is costly to install a control line across the producing interval. Therefore, a small diameter tubing, known as a “stinger”, is used to support the control line and lower it down the well bore into the region of interest or production zone. The present invention, as well as its other advantages, also seeks to provide means, which eliminate the cost, time, and well incapacity that results from the intrusive use of a “stinger”.
The present invention has, as its object, the provision of apparatus, method and means, capable of allowing the introduction and maintenance of a fibre optic line, passing into and across the zone of interest, with a portion thereof external to the wellhead, capable of being maintained in position while other operations are carried out in the well bore, unaffected by fluids flowing in the well bore and eliminating the need for a well bore of increased diameter.
SUMMARY
According to a first aspect, the present invention consists in an apparatus for providing a down-hole conduit for carrying an instrumentation line for use with a well bore in a substrate, the instrumentation line passing from the surface, towards the bottom of the well bore; said apparatus comprising: a hollow primary member, for insertion to extend into the well bore; said primary member comprising a first line of conduit on the outer surface thereof and primary coupling means for acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Providing a conduit for an instrumentation line does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Providing a conduit for an instrumentation line, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Providing a conduit for an instrumentation line will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105494

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.