Proton exchange membrane fuel cell power system

Chemistry: electrical current producing apparatus – product – and – With pressure equalizing means for liquid immersion operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S047000, C429S047000

Reexamination Certificate

active

06218035

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a proton exchange membrane (PEM) fuel cell power system, and more specifically to a power system which includes a plurality of discrete fuel cell modules producing respective voltages, and wherein the discrete fuel cell modules are self humidifying, have an electrical efficiency of at least about 40%, and offer plant reliability, ease-of-maintenance, and reduced capital costs not possible heretofore.
2. Description of the Prior Art
The fuel cell was developed in England more than 150 years ago by Sir William Grove in 1839. The inventor called it a “gaseous battery” at the time to distinguish the fuel cell from another invention of his, the electric storage battery. The fuel cell is an electrochemical device which reacts hydrogen and oxygen which is usually supplied from the air, to produce electricity and water. With prior processing, a wide range of fuels, including natural gas and coal-derived synthetic fuels can be converted to electric power. The basic process is highly efficient, and for those fuel cells fueled directly by hydrogen, pollution free. Further, since fuel cells can be assembled into stacks, of varying sizes, power systems have been developed to produce a wide range of output levels and thus satisfy numerous kinds of end-use applications.
Heretofore, fuel cells have been used as alternative power sources in earth and space applications. Examples of this use are unattended communications repeaters, navigational aids, space vehicles, and weather and oceanographic stations, to name but a few.
Although the basic process is highly efficient and pollution free, a commercially feasible power system utilizing this same technology has remained elusive. For example, hydrogen-fueled fuel cell power plants based on Proton Exchange Membrane (PEM) Fuel Cells are pollution free, clean, quiet on site, and have few moving parts. Further, they have a theoretical efficiency of up to about 80%. This contrasts sharply with conventional combustion technologies such as combustion turbines, which convert at most 50% of the energy from combusting fuel into electricity and in smaller generation capacities, are uneconomical and significantly less efficient.
Although the fundamental electrochemical processes involved in all fuel cells are well understood, engineering solutions have proved elusive for making certain fuel cell types reliable and for other types, economical. In the case of PEM fuel cells, reliability has not been the driving concern to date, but rather the installed cost per watt of generation capacity has. In order to lower the PEM fuel cost per watt, much attention has been placed on increasing power output. Historically this has resulted in additional, sophisticated balance-of-plant systems necessary to optimize and maintain high PEM fuel cell power outputs. A consequence of highly complex balance-of-plant systems is they do not readily scale down to low (single residence) generation capacity plants. Consequently installed cost, efficiency, reliability and maintenance expenses all are adversely effected in low generation applications.
As earlier noted, a fuel cell produces an electromotive force by reacting fuel and oxygen at respective electrode interfaces which share a common electrolyte. In the case of a PEM fuel cell, hydrogen gas is introduced at a first electrode where it reacts electrochemically in the presence of a catalyst to produce electrons and protons. The electrons are circulated from the first electrode to a second electrode through an electrical circuit connected between the electrodes. Further, the protons pass through a membrane of solid, polymerized electrolyte (a proton exchange membrane or PEM) to the second electrode. Simultaneously, an oxidant, such as oxygen gas, (or air), is introduced to the second electrode where the oxidant reacts electrochemically in the presence of the catalyst and is combined with the electrons from the electrical circuit and the protons (having come across the proton exchange membrane) thus forming water and completing the electrical circuit. The fuel-side electrode is designated the anode and the oxygen-side electrode is identified as the cathode. The external electric circuit conveys electrical current and can thus extract electrical power from the cell. The overall PEM fuel cell reaction produces electrical energy which is the sum of the separate half cell reactions occurring in the fuel cell less its internal losses.
Since a single PEM fuel cell produces a useful voltage of only about 0.45 to about 0.7 volts D.C. under a load, practical PEM fuel cell plants have been built from multiple cells stacked together such that they are electrically connected in series. In order to reduce the number of parts and to minimize costs, rigid supporting/conducting separator plates often fabricated from graphite or special metals have been utilized. This is often described as bipolar construction. More specifically, in these bipolar plates one side of the plate services the anode, and the other the cathode. Such an assembly of electrodes, membranes, and the bipolar plates are referred to as a stack. Practical stacks have heretofore consisted of twenty or more cells in order to produce the direct current voltages necessary for efficient inverting to alternating current.
The economic advantages of designs based on stacks which utilize bipolar plates are compelling. However, this design has various disadvantages which have detracted from its usefulness. For example, if the voltage of a single cell in a stack declines significantly or fails, the entire stack, which is held together in compression with tie bolts, must be taken out of service, disassembled, and repaired. In traditional fuel cell stack designs, the fuel and oxidant are directed by means of internal manifolds to the electrodes. Cooling for the stack is provided either by the reactants, natural convection, radiation, and possibly supplemental cooling channels and/or cooling plates. Also included in the prior art stack designs are current collectors, cell-to-cell seals, insulation, piping, and various instrumentation for use in monitoring cell performance. The fuel cell stack, housing, and associated hardware make up the operational fuel cell plant. As will be apparent, such prior art designs are unduly large, cumbersome, and quite heavy. Certainly, any commercially useful PEM fuel cell designed in accordance with the prior art could not be manipulated by hand because of these characteristics.
It is well known that PEM fuel cells can operate at higher power output levels when supplemental humidification is made available to the proton exchange membrane (electrolyte). Humidification lowers the resistance of proton exchange membranes to proton flow. Supplemental water can be introduced into the hydrogen or oxygen streams or more directly to the proton exchange membrane by means of the physical phenomena of wicking. The focus of investigation in recent years has been to develop Membrane/Electrode Assemblies (MEAs) with increasingly improved power output when running without supplemental humidification (self-humidified). Being able to run an MEA when it is self-humidified is advantageous because it decreases the complexity of the balance-of-plant and its attendant costs. However, self-humidification heretofore has resulted in fuel cells running at lower current densities, and thus, in turn, has resulted in more of these assemblies being required in order to generate a given amount of power. This places added importance on reducing the cost of the supporting structures, such as the bipolar plates, in conventional designs.
Accordingly, a proton exchange membrane fuel cell power system which achieves the benefits to be derived from the aforementioned technology but which avoids the detriments individually associated therewith, is the subject matter of the present invention.
SUMMARY OF THE INVENTION
One aspect of the present invention is to provide a proton exchange membrane fuel cell power system h

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Proton exchange membrane fuel cell power system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Proton exchange membrane fuel cell power system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proton exchange membrane fuel cell power system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535098

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.