Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Enzyme component of specific activity or source
Reexamination Certificate
1997-08-19
2001-03-06
Fries, Kery (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
Enzyme component of specific activity or source
C510S111000, C510S195000, C510S197000, C510S218000, C510S224000, C510S226000, C510S234000, C510S298000, C510S356000, C510S300000, C510S320000, C510S321000, C510S338000
Reexamination Certificate
active
06197739
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to enzyme containing detergent compositions that can be used to remove food soil from typically food or foodstuff related manufacturing equipment or processing surfaces. The invention relates to enzyme containing formulations in a one and two part aqueous composition, a non-aqueous liquids composition, a cast solid, a granular form, a particulate form, a compressed tablet, a gel, a paste and a slurry form. The invention also relates to methods capable of a rapid removal of gross food soils, films of food residue and other minor food or proteinaceous soil compositions.
BACKGROUND OF THE INVENTION
Periodic cleaning and sanitizing in the food process industry is a regimen mandated by law and rigorously practiced to maintain the exceptionally high standards of food hygiene and shelf-life expected by today's consumer. Residual food soil, left on food contact equipment surfaces for prolonged periods, can harbor and nourish growth of opportunistic pathogen and food spoilage microorganisms that can contaminate foodstuffs processed in close proximity to the residual soil. Insuring protection of the consumer, against potential health hazards associated with food borne pathogens and toxins and, maintaining the flavor, nutritional value and quality of the foodstuff, requires diligent cleaning and soil removal from any surfaces of which contact the food product directly or are associated with the processing environment.
The term “cleaning”, in the context of the care and maintenance of food preparation surfaces and equipment, refers to the treatment given all food product contact surfaces following each period of operation to substantially remove food soil residues including any residue that can harbor or nourish any harmful microorganism. Freedom from such residues, however, does not indicate perfectly clean equipment. Large populations of microorganisms may exist on food process surfaces even after visually successful cleaning. The concept of cleanliness as applied in the food process plant is a continuum wherein absolute cleanliness is the ideal goal always strived for; but, in practice, the cleanliness achieved is of lesser degree.
The term “sanitizing” refers to an antimicrobicidal treatment applied to all surfaces after the cleaning is effected that reduces the microbial population to safe levels. The critical objective of a cleaning and sanitizing treatment program, in any food process industry, is the reduction of microorganism populations on targeted surfaces to safe levels as established by public health ordinances or proven acceptable by practice. This effect is termed a “sanitized surface” or “sanitization”. A sanitized surface is, by Environmental Protection Agency (EPA) regulation, a consequence of both an initial cleaning treatment followed with a sanitizing treatment. A sanitizing treatment applied to a cleaned food contact surface must result in a reduction in population of at least 99.999% reduction (5 log order reduction) for a given microorganism. Sanitizing treatment is defined by “Germicidal and Detergent Sanitizing Action of Disinfectants”,
Official Methods of Analysis of the Association of Official Analytical Chemists,
paragraph 960.09 and applicable sections, 15th Edition, 1990 (EPA Guideline 91-2). Sanitizing treatments applied to non-food contact surfaces in a food process facility must cause 99.9% reduction (3 log order reduction) for given microorganisms as defined by the “Non-Food Contact Sanitizer Method, Sanitizer Test” (for inanimate, non-food contact surfaces), created from EPA DIS/TSS-10, Jan. 1, 1982. Although it is beyond the scope of this invention to discuss the chemistry of sanitizing treatments, the microbiological efficacy of these treatments is significantly reduced if the surface is not clean prior to sanitizing. The presence of residual food soil can inhibit sanitizing treatments by acting as a physical barrier which shields microorganisms lying within the soil layer from the microbicide or by inactivating sanitizing treatments by direct chemical interaction which deactivates the killing mechanism of the microbicide. Thus, the more perishable the food, the more effective the cleaning treatment must be.
The technology of cleaning in the food process industry has traditionally been empirical. The need for cleaning treatments existed before a fundamental understanding of soil deposition and removal mechanism was developed. Because of food quality and public health pressures, the food processing industry has attained a high standard of practical cleanliness and sanitation. This has not been achieved without great expense, and there is considerable interest in more efficient and less costly technology. As knowledge about soils, the function of cleaning chemicals, and the effects of cleaning procedures increased and, as improvements in plant design and food processing equipment become evident, the cost effectiveness and capability of cleaning treatments, i.e. cleaning products and procedures, to remove final traces of residue have methodically improved. The consequence for the food process industry and for the public is progressively higher standards.
The search for ever more efficient and cost effective cleaning treatments, coupled with increasing demand for user friendly and environmentally compatible cleaning chemicals, has fostered a growing number of investigations which have significantly augmented understanding of soil deposition and removal processes by theoretical treatise rather than empirical experimentation. See, for example, “Theory and Practice of Hard-Surface Cleaning”, Jennings, W. G.,
Advances in Food Research,
Vol. 14, pp. 325-455 (1965); or, “Forces in Detergency”, Harris, J. C.,
Soap and Chemical Specialties,
Vol. 37 (5), Part I, pp. 68-71 and 125; Vol. 37 (6), Part II, pp. 50-52; Vol. 37 (7), Part III, pp. 53-55; Vol. 37 (8), Part IV, pp. 61-62, 104, 106; Part V, pp. 61-64; (1961) or “Physico-chemical aspects of hard-surface cleaning. 1. Soil removal mechanisms”, Koopal, L. K.,
Neth. Milk Dairy J.,
39, pp. 127-154 (1985). Such studies confirm that soil deposition on a surface and the sequential transitions of soil adherence to the surface (adsorption), soil removal from the surface and soil suspension in a cleaning/solution, can be described in terms of well established, generally accepted concepts of colloidal and surface chemistry. The significance of this association is that predictive tools now exist which assist the design of chemical cleaning compounds optimized for specific soils or formulated to overcome other deficiencies in the cleaning program.
These precepts suggest that a clean surface is difficult to maintain, that energy is released (entropy is increased) during soil deposition which favors physicochemical stability, i.e. a soiled surface is nature's preferred or more stable condition. To reverse this process and clean the surface, energy must necessarily be supplied. In normal practice, this energy takes the form of mechanical and thermal energies carried to the soiled surface. Chemical (detergent) additives to the cleaning solution (usually water) reduce the amount of energy required to reverse the energetically favored soiling process. Thus, the definition of detergent (Definition of the Word “Detergent”, Bourne, M. C. and Jennings, W. G.,
The Journal of the American Oil Chemists' Society,
40, p. 212 (1963)) is “any substance that either alone or in a mixture reduces the work requirement of a cleaning process”. Simply, detergents are used because they make cleaning easier. It follows that the word “detergency” is “then understood to mean cleaning or removal of soil from a substrate by a liquid medium.” (Ibid.)
Soil removal cannot be considered a spontaneous process because soil removal kinetics require a finite period. The longer the cleaning solution is in contact with the deposited soil, the more soil is removed—to a practical limit. Final traces of soil become increasingly difficult to remove. In the last phase of the soil removal process,
Bull Sandra L.
Cords Bruce R.
Oakes Thomas R.
Richter Francis L.
Wick Kristine K.
Ecolab Inc.
Fries Kery
Merchant & Gould P.C.
LandOfFree
Proteolytic enzyme cleaner does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Proteolytic enzyme cleaner, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Proteolytic enzyme cleaner will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2442145