Protein tyrosine phosphatase PTP20 and related products and...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S195000, C435S196000, C435S252300, C435S320100, C536S023200, C530S300000, C530S350000

Reexamination Certificate

active

06797501

ABSTRACT:

INTRODUCTION
The present invention relates generally to a newly identified protein tyrosine phosphatase and related products and methods.
BACKGROUND OF THE INVENTION
The following description of the background of the invention is provided to aid in understanding the invention, but is not admitted to describe or constitute prior art to the invention.
Cellular signal transduction is a fundamental mechanism whereby extracellular stimuli are relayed to the interior of cells and subsequently regulate diverse cellular processes. One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of proteins. Phosphorylation of polypeptides regulates the activity of mature proteins by altering their structure and function. Phosphate most often resides on the hydroxyl moiety (—OH) of serine, threonine, or tyrosine amino acids in proteins.
Enzymes that mediate phosphorylation of cellular effectors generally fall into two classes. The first class consists of protein kinases which transfer a phosphate moiety from adenosine triphosphate to protein substrates. The second class consists of protein phosphatases which hydrolyze phosphate moieties from phosphoryl protein substrates. The converse functions of protein kinases and protein phosphatases balance and regulate the flow of signals in signal transduction processes.
Protein kinases and protein phosphatases are generally divided into two groups—receptor and non-receptor type proteins. Most receptor-type protein tyrosine phosphatases contain two conserved catalytic domains, each of which encompasses a segment of 240 amino acid residues. Saito et al., 1991,
Cell Growth and Diff.
2:59-65. Receptor protein tyrosine phosphatases can be subclassified further based upon the amino acid sequence diversity of their extracellular domains. Saito et al., supra; Krueger et al., 1992,
Proc. Natl. Acad. Sci. USA
89:7417-7421.
Protein kinases and protein phosphatases are also typically divided into three classes based upon the amino acids they act upon. Some catalyze the addition or hydrolysis of phosphate on serine or threonine only, some catalyze the addition or hydrolysis of phosphate on tyrosine only, and some catalyze the addition or hydrolysis of phosphate on serine, threonine, and tyrosine.
Tyrosine phosphatases can down-regulate the catalytic activity of protein kinases involved in cell proliferation and are therefore thought to be possible anti-cancer proteins. Protein phosphatases with inappropriate activity are also involved in some types of cancer. Because abnormally elevated levels of cell proliferation are associated with receptor and non-receptor protein kinases with unregulated activity, protein phosphatase-catalyzed dephosphorylation of a protein kinase can down-regulate kinase activity and thereby decrease the rate of cell proliferation.
In addition to their role in cellular proliferation, protein phosphatases are thought to be involved in cellular differentiation processes. Cell differentiation occurs in some cells upon nerve growth factor (NGF) or epidermal growth factor (EGF) stimulation. Cellular differentiation is characterized by rapid membrane ruffling, cell flattening, and increases in cell adhesion. Chao, 1992,
Cell
68:995-997.
Alignment of primary amino acid sequences of known PTPs shows that their catalytic domains share common amino acid sequences. This observation has facilitated efforts of cloning protein phosphatases from multiple organisms and tissues. Probing cDNA libraries with polynucleotides complementary to cDNA encoding protein phosphatase consensus sequences has identified cDNAs resembling protein phosphatase sequences via the polymerase chain reaction (PCR). Some polypeptide molecules encoded by these cDNAs have tyrosine phosphatase activity.
SUMMARY OF THE INVENTION
The present invention relates to nucleic acid molecules encoding a newly identified protein tyrosine phosphatase named PTP20, nucleic acid molecules encoding portions of the fill length protein, nucleic acid vectors harboring such nucleic acid molecules, cells containing such nucleic acid vectors, purified polypeptides encoded by such nucleic acid molecules, antibodies to such proteins and polypeptides, and methods of identifying compounds that bind PTP20 or abrogate its interactions with natural binding partners. Also disclosed are methods for diagnosing abnormal conditions in an organism with PTP20 related molecules or compounds. The nucleic acid molecules, nucleic acid vectors, host cells, polypeptides, and antibodies may be produced using the information provided herein in conjunction with well known and standard techniques used currently in the art.
The present invention is based in part upon the isolation and characterization of nucleic acid molecules encoding a novel protein phosphatase designated PTP20. PTP20 regulates growth factor stimulation of cellular differentiation. PTP20 is thought to be involved in cellular differentiation, as its over-expression in rat pheochromocytoma cells (PC12) is associated with increased rates of differentiation. Various treatments of neural cancers as well as neural damage are thus provided based on the discovery of PTP20 and its role in these disorders.
Thus in a first aspect, the invention features an isolated, enriched, or purified nucleic acid molecule encoding a PTP20 polypeptide.
The term “isolated”, in reference to nucleic acid molecules, indicates that a naturally occurring sequence has been removed from its normal cellular environment. Thus, the sequence may be in a cell-free solution or placed in a different cellular environment. The term does not imply that the sequence is the only nucleotide chain present, but that it is essentially free (about 90-95% pure at least) of non-nucleotide material such as chromosomal DNA or proteins.
The term “enriched”, in reference to nucleic acid molecules, means that the specific DNA or RNA sequence constitutes a significantly higher fraction (2-5 fold) of the total DNA or RNA present in the cells or solution of interest than in normal or diseased cells or in the cells from which the sequence was taken. A person skilled in the art could enrich a nucleic acid mixture by preferentially reducing the amount of other DNA or RNA present, or preferentially increasing the amount of the specific DNA or RNA, or both. However, nucleic acid molecule enrichment does not imply that there is no other DNA or RNA present, the term only indicates that the relative amount of the sequence of interest has been significantly increased. The term “significantly” qualifies “increased” to indicate that the level of increase is useful to the person performing the recombinant DNA technique, and generally means an increase relative to other nucleic acids of at least 2 fold, or more preferably at least 5 to 10 fold or more. The term also does not imply that there is no DNA or RNA from other sources. Other DNA may, for example, comprise DNA from a yeast or bacterial genome, or a cloning vector. In addition, levels of mRNA may be naturally increased relative to other species of mRNA when working with viral infection or tumor growth techniques. The term “enriched” is meant to cover only those situations in which a person has intervened to elevate the proportion of the desired nucleic acid.
Most methods of recombinant nucleic acid manipulation require that these molecules are in a purified form. The term “purified”, in reference to nucleic acid molecules does not require absolute purity (such as a homogeneous preparation); instead, it represents an indication that the sequence is relatively more pure than in its cellular environment (compared to the natural level this level should be at least 2-5 fold greater, e.g., in terms of mg/ml). The claimed DNA molecules obtained from clones could be obtained directly from total DNA or from total RNA. cDNA clones are not naturally occurring, but rather are preferably obtained via manipulation of a partially purified, naturally occurring substance (messenger RNA). The construction of a cDNA library from mRNA involves the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protein tyrosine phosphatase PTP20 and related products and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protein tyrosine phosphatase PTP20 and related products and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protein tyrosine phosphatase PTP20 and related products and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207928

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.