Protein-deamidating enzyme, microorganism producing the...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S004000, C435S041000, C435S069100, C435S183000, C435S219000, C435S226000, C536S063000, C536S063000, C536S023700, C530S350000, C426S056000

Reexamination Certificate

active

06756221

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a novel enzyme, namely a novel enzyme which acts upon side chain amido groups in protein and thereby releases side chain carboxyl groups and ammonia, to a production process thereof and to a novel bacterium which produces the same. Particularly, it relates to a method for the production of an enzyme having a property to deamidate amido groups in protein, which comprises culturing a bacterial strain capable of producing an enzyme having a property to deamidate amido groups in protein, that belongs to Cytophagales or Actinomycetes, more particularly to the genus Chryseobacterium, Flavobacterium, Empedobacter, Sphingobacterium, Aureobacterium or Myroides, in a medium, thereby allowing the strain to produce the enzyme, and subsequently collecting the enzyme from the culture mixture. More particularly, it relates to a method for the production of an enzyme having a property to deamidate amido groups in protein, which comprises culturing a new strain Chryseobacterium sp. No. 9670 that belongs to the genus Chryseobacterium, thereby allowing the strain to produce the enzyme, and subsequently collecting the enzyme from the culture mixture. The invention also relates to a method for the modification of protein, which uses a novel enzyme having an activity to directly act upon amido groups in protein. It also relates to an enzyme which has a property to deamidate amido groups in protein, to a gene which encodes the enzyme, to a vector which contains the gene, to a transformant transformed with the vector, and to a method for the production of an enzyme having a property to deamidate amido groups in protein, which comprises culturing the transformant in a medium, thereby allowing the transformant to produce the enzyme, and subsequently collecting the enzyme from the culture.
BACKGROUND ART
Glutaminase and/or asparaginase are enzymes which hydrolyze glutamine and/or asparagine to convert them into glutamic acid and/or aspartic acid and ammonia, and it is well known that these enzymes are obtained from animals, plants and microorganisms. However, these enzymes are enzymes which act upon glutamine and/or asparagine in a specific fashion and cannot deamidate glutamine and/or asparagine in a peptide. Much less, they cannot deamidate &ggr; and/or &bgr;-amido groups of glutamine and/or asparagine in a protein having larger molecular weight than that of a peptide. Still less, they cannot act upon glutamine and/or asparagine bonded in a protein state.
Also, transglutaminase is known as an enzyme which acts upon amido groups existing in a peptide state. This enzyme catalyzes the reaction of introducing an amine compound into protein by covalent bonding or the reaction of cross-linking the glutamine residue and lysine residue of protein via &egr;-(&ggr;-glutamyl)lysine-peptide bonding, using the amido group of peptide-bonded glutamine as an acyl donor and the amino group of the primary amine as an acyl acceptor. It is known that, when amine or lysine does not exists in the reaction system or blocked, water acts as an acyl acceptor and the glutamine residue in peptide is deamidated to become glutamic acid residue, but since this enzyme is basically an acyl group transferase as described above, cross-linking reaction occurs when allowed to act on a usual protein and the reaction to deamidate protein does not occur, so that this enzyme is different from the enzyme of the invention.
In addition, Peptide glutaminase I and peptide glutaminase II produced by
Bacillus circulans
are known as an enzyme which performs deamidation by acting upon glutamine bonded in peptide. It is known that the former acts on the glutamine residue existing at the C terminal of peptide and the latter acts on the glutamine residue existing in the peptide. However, these enzymes do not act upon a high molecular weight protein and acts only upon a low molecular weight peptide [M. Kikuchi, H. Hayashida, E. Nakano and K. Sakaguchi,
Biochemistry
, vol. 10, 1222-1229 (1971)].
Also, plural studies have been made to attempt to allow these enzymes (Peptide glutaminase I and II) to act upon a high molecular weight protein rather than a low molecular weight peptide, and it has been revealed that these enzymes do not act on a high molecular weight protein but act only on a protein hydrolysate peptide.
Illustratively, Gill et al. have reported that each of Peptide glutaminase I and II does not act on milk casein and whey protein both in native form and denatured form. They also have reported that, as a result of studies on activities on protein hydrolysate, only Peptide glutaminase II acted only on peptide having a molecular weight of 5,000 or less (B. P. Gill, A. J. O'Shaughnessey, P. Henderson and D. R. Headon,
Ir. J. Food Sci. Technol
., vol. 9, 33-41 (1985)). Similar studies were carried out by Hamada et al. using soy bean protein, and the result was consistent with the result by Gill et al. That is, it was reported that these enzymes showed deamidation percentage of 24.4 to 47.7% on soy bean peptide (Peptone), but did not substantially act on soy bean protein (0.4 to 0.8%) (J. S. Hamada, F. F. Shih, A. W. Frank and W. E. Marshall,
J. Food Science
, vol. 53, no. 2, 671-672 (1988)).
A series of these reports by Hamada et al. show data indicating that peptidoglutaminase derived from Bacillus circulans acts on protein though very slightly. On the other hand, Kikuchi et al. (M. Kikuchi, H. Hayashida, E. Nakano and K. Sakaguchi,
Biochemistry
, vol. 10, 1222-1229 (1971) and Gill et al. (B. P. Gill, A. J. O'Shaughnessey, P. Henderson and D. R. Headon,
Ir. J. Food Sci. Technol
., vol. 9, 33-41 (1985)) have used the same enzyme derived from the same strain (
Bacillus circulans
ATCC 21590) and reported that this enzyme acts on low molecular weight peptide but does not act on protein. The present inventor has purified the peptidoglutaminase derived from
Bacillus circulans
ATCC 21590 and confirmed that the slight apparent deamidation activity on protein reported by Hamada et al. is based on the action the enzyme upon peptide formed by the protease contaminated in the peptidoglutaminase preparation.
There is a report suggesting the existence of an enzyme originating from plant seed, which catalyzes deamidation of protein (I. A. Vaintraub, L. V. Kotova and R. Shara,
FEBS Letters
, vol. 302, 169-171 (1992)). Although this report observed ammonia release from protein using a partially purified enzyme sample, it is clear that this report does not prove the existence of the enzyme disclosed in the invention based on the following reasons. That is, since a partially purified enzyme sample was used, absence of protease activity was not confirmed, and no change in molecular weight of substrate protein after the reaction was not confirmed, there remains a possibility that not one enzyme but plural enzymes such as protease and peptidase acted on protein to release glutamine and/or asparagine as free amino acids and ammonia was released by glutaminase and/or asparaginase which deamidate these free amino acids or a possibility that glutamine-containing low molecular weight peptide produced in a similar way is deamidated by a peptide glutaminase-like enzyme. In addition, there is a possibility that deamidation occurred as a side-reaction by protease. In particular, it should be noted that this report clearly describes that a glutaminase activity which acted on free glutamine to release ammonia was present in the partially purified preparation used therein.
Accordingly, there is no report until now which confirmed the presence of an enzyme which catalyzes deamidation of high molecular weight protein, by purifying the enzyme as a single protein and isolating and expressing the gene encoding the same.
In general, when carboxyl groups are formed by deamidation of glutamine and asparagine residues in protein, negative charge of the protein increases and, as the results, its isoelectric point decreases and its hydration ability increases. It also causes reduction of mutual reaction between

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protein-deamidating enzyme, microorganism producing the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protein-deamidating enzyme, microorganism producing the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protein-deamidating enzyme, microorganism producing the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294782

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.