Protective sheath and method for ultrasonic probes

Surgery – Means for introducing or removing material from body for... – With means for cutting – scarifying – or vibrating tissue

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S500000, C604S163000, C604S294000

Reexamination Certificate

active

06224565

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
Not Applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable.
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable.
BACKGROUND OF THE INVENTION
This invention relates generally to surgical instruments, and, more particularly, to a surgical device for ultrasonic fragmentation or emulsification of soft tissues of a patient.
Liposuction is a surgical procedure for altering the human form, specifically by removal of localized deposits of fat tissues that are unresponsive to diet or exercise. The procedure is also known as suction lipectomy, lipolysis, and more recently as body contour surgery, body sculpting surgery, or suction-assisted liposuction. It is most often performed by plastic surgeons, although dermatologists, gynecologists, and other surgical specialties also perform such procedures.
A liposuction procedure is typically accomplished by inserting a small cannula through an incision in the skin, applying a suction source to the end of the cannula that remains outside of the body, and forcing the working end of the cannula forward and backward in the layer of fatty tissue. The fatty tissue is torn, crushed, or avulsed, and is then aspirated through small openings along the sides of the cannula near the tip and then through a central lumen in the cannula to a tissue canister placed in-line with the cannula and the suction source. The procedure may involve multiple incisions and many passes of the cannula in each incision to achieve the desired cosmetic effect for the patient. No ultrasonic energy is used in this procedure.
A liposuction cannula is typically a small metal tube with a blunt, closed end at the tip of the cannula. The blunt, closed end at the tip of the cannula is intended to minimize damage to tissues as the device is thrust forward. Small openings along the sides of the cannula near the tip create passages between the tissue and the central lumen of the cannula, which is in fluid communication with a suction source, so that tissue and fluids can be aspirated from the patient's body. In general, the suction causes the adipose tissue to be sucked into the small openings along the sides of the cannula, and the blunt dissection as provided by the surgeon's manipulation of the cannula, then tears the tissue. The fragments and released fluids are then aspirated through the openings along the sides of the cannula and then through the central lumen of the cannula.
The liposuction procedure can be traumatic for the patient. The liposuction cannula does not discriminate between adipose tissue and other tissues such as nerves, blood vessels, or lymph tissues. The mechanical disruption of those tissues by the liposuction cannula may result in, among other things, bleeding, bruising, temporary numbness, or swelling. Further, the final cosmetic result achieved for the patient is a function of the skill of the surgeon, the patient, and the type of surgical instrumentation used in the surgery. Liposuction cannulae used in the liposuction procedure may remove more adipose tissue from one area than another area in the patient, resulting in skin contour irregularities and a final cosmetic result for the patient that is not smooth or uniform or desired.
Therefore, there is a need to improve the design of liposuction cannulae to help the surgeon to better discriminate between adipose tissue and other tissues such as nerves, blood vessels, and lymph tissues, so that the adipose tissues can be fragmented and removed while the remaining tissues are damaged as little as possible or not at all. Further, there is a need to improve the design of current liposuction cannulae such that adipose tissue is removed in a uniform and predictable manner such that an improved cosmetic result is achieved for the patient.
Recently, several instruments have combined ultrasonic vibrations and the liposuction cannula to improve upon the tissue discrimination capability of the liposuction cannula and to provide an instrument, which removes adipose tissue more uniformly than current liposuction cannulae. This procedure is commonly referred to as ultrasound-assisted lipoplasty. In a typical ultrasound-assisted lipoplasty procedure, an ultrasonically vibrating cannula is inserted through an incision in the patient's skin and passed forward and backward through the adipose tissue layer. The ultrasonically vibrating cannula preferentially fragments or emulsifies the adipose tissues, which are then typically aspirated through a central lumen in the ultrasonically vibrating cannula. Consequently, the other tissues such as nerves, vessels, and lymph tissues remain generally undisturbed.
Initial experiences with the ultrasound-assisted lipoplasty procedure have been mixed. A comparison of the suction-assisted liposuction and ultrasound-assisted lipoplasty approaches with currently available surgical instruments for both procedures was recently given in
Ultrasound-Assisted Lipoplasty Resource Guide
, published in PlasticSugery News, a publication of The American Society of Plastic and Reconstructive Surgeons, 1997. In the article the author cites the disadvantages of the current ultrasound-assisted lipoplasty procedure compared to the suction-assisted liposuction procedure as: 1) burns of the skin are possible, 2) longer incisions are needed, 3) seromas are more common, 4) longer operating times, and 5) greater expense. Thus, current ultrasound-assisted lipoplasty surgical systems for fragmentation and aspiration of adipose tissues are more costly and slower than the suction-assisted liposuction procedure and have the potential to damage tissues beyond that of suction-assisted liposuction, including burns of the skin and seroma formation. There is, therefore, a need to increase patient safety, to increase the speed of the ultrasound-assisted lipoplasty procedure, and to minimize the potential for burns or seroma formation.
An ultrasonic probe for soft tissue fragmentation may be hollow, in which case the instrument may be referred to as an ultrasonic cannula or it may be solid. The distal end of an ultrasonic probe experiences small rapid excursions along an axis that passes through the proximal end and the distal end of the ultrasonic probe. A maximum excursion of 350 &mgr;m peak-to-peak at 23 kHz has been obtained in a commercially available ultrasonic aspirator for ultrasonic surgery, e.g., the CUSA of Valleylab Inc., Boulder, Colo.
An ultrasonic handpiece typically has a handle with an ultrasonic motor, an ultrasonic horn, and an ultrasonic probe. At locations along the ultrasonic probe referred to as ‘vibratory nodes’ the elastic stress and strain will have maximum values and there will be no motion of the ultrasonic probe relative to the handle of the ultrasonic handpiece. At locations along the ultrasonic probe referred to as ‘vibratory loops’ the elastic stress and strain will have minimum values and there will be maximum motion of the ultrasonic probe relative to the handle of the ultrasonic handpiece. The ‘vibratory nodes’ become hot as the ultrasonic probe vibrates at the resonant ultrasonic frequency because the metallic material of the ultrasonic probe is being continually worked as it is stretched and released many thousand times per second. In an ultrasound-assisted lipoplasty procedure tissue surrounds and contacts the ultrasonic probe along its length. Thus, tissue contact with a vibratory node after the probe has been in operation can cause a tissue burn. A tissue burn may also occur for any tissue that contacts a vibratory loop because of the frictional heat generated between the tissue and the rapidly moving ultrasonic probe at the vibratory loop. Further, the heat generated by the ultrasonic motor in the ultrasonic handpiece may be conducted from the ultrasonic motor through the ultrasonic horn to the ultrasonic probe, further increasing the temperature of the ultrasonic probe. The combination of these three sources of heat can and will cause tissue burns, most particularly at or near the vibratory loops.
Many patents d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Protective sheath and method for ultrasonic probes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Protective sheath and method for ultrasonic probes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protective sheath and method for ultrasonic probes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2455368

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.