Special receptacle or package – Shock protection type – With yieldable retainer
Reexamination Certificate
2002-09-20
2004-10-19
Ackun, Jr., Jacob K. (Department: 3712)
Special receptacle or package
Shock protection type
With yieldable retainer
C206S594000
Reexamination Certificate
active
06805241
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to product cushioning devices for use in packaging shock sensitive products. In particular, the invention relates to re-usable or recyclable product cushioning devices which are made from plastics material, and which are particularly intended for use with shock sensitive products such as computer components—particularly hard drives, CD and DVD drives, and the like. The configuration of cushioning devices in keeping with the present invention is typically as an end cap. Product cushioning structures in keeping with the present invention comprise unitary structures which may be molded from a suitable plastic material, using a thermoforming molding techniques.
BACKGROUND OF THE INVENTION
The use of product cushioning devices for shock sensitive products has been known for many years. Typically, cushioning for shock sensitive devices comprises a number of different approaches, each of which may have its own particular advantages and/or disadvantages.
For example, it has been known for many years to wrap shock sensitive or delicate devices or merchandise in tissue paper, and to cushion the products with loosely balled tissue paper. Another use of paper has been shredded paper, or excelsior. A more elegant approach has been to use bubble-pack, which comprises a sheet material having a plurality of contained bubbles of air formed therein. Another approach which has been used for many years has been the use of a plurality of discrete molded foamed polystyrene pellets, sometimes referred to as “peanuts” in the industry, to fill around a product in a container.
As the requirement for better packaging and cushioning became more demanding, for example with the introduction to the market of complicated and expensive electronics devices such as computer monitors, and more particularly notebook computers, printed circuit boards, and the like, the requirement arose for more sophisticated and better shock absorbing cushioning devices. Standards were developed for acceptance of cushioning devices, including drop tests and the like, to determine if such devices would protect the shock sensitive product from shock acceleration greater than the product's fragility level—typically, from 20 g's to 100 g's.
This has given rise to the use of such products as honeycomb cardboard, and particularly foamed polystyrene, foamed polyurethane, foamed polypropylene, or foamed polyethylene. Flexible foam devices are well known for use as corner pieces or edge pieces. Likewise, foamed polystyrene products—which are more rigid—are also well known for use as corner pieces or end caps; and very often, they are product specific in that they are particularly molded having a specific configuration for use with a particular product.
In general, however, flexible foam cushioning devices, and foamed polystyrene cushioning devices, are not recyclable. There are several reasons for that condition: The first is that flexible foam cushioning devices, and polystyrene cushioning devices, tend to be quite bulky, and are usually discarded with the packaging container in which the product has been shipped. There are very few specific recycling depots that are set up for either flexible foam or especially polystyrene cushioning devices; and, in any event, foamed polystyrene and foamed polyurethane cannot generally be recycled. Its re-usability may be provided for, particularly as general corner pieces, if they remain intact, or as product specific end caps; but, unless such foamed polystyrene cushioning devices are being used in a closed shipping system, they will not be recovered for re-use. Moreover, foamed polystyrene cushioning devices tend to be very frangible, and do not maintain their integrity very well once they have been used and removed from the packaging container in which they are shipped.
More elegant cushioning devices have more recently entered the market, comprising different types of blow-molded or other plastics shell products, most of which are closed structures which are filled with air or other gas. Some such structures are inflatable, some are closed, and some may be open to the atmosphere but are formed of a relatively rigid material. All such products are generally formed from high density polyethylene, which may be recycled because it is easily chopped up and made into further products, or such products may be re-usable if they are employed in a closed delivery and recovery system. Low density polyethylene may also be found in products such as those described immediately above, although its use is quite limited at the present time.
Very often, computer components such as hard drives or CD or DVD drives, or resellers of the same, wish to package such shock sensitive devices individually in outer packaging containers. That is to say, these shock sensitive devices are packaged and shipped, or stored, in individual outer boxes. At the same time, however, it is not desired to employ excessive packaging materials such as those that are spoken of above. Accordingly, the present invention provides an end cap which may be placed at both ends of such shock sensitive devices, where the dimensions of the end cap, particularly in the base portion thereof, are such that the end cap fits intimately into an individual outer box; and the end cap has a product receiving recess or cavity such that the shock sensitive device may be received intimately into that cavity.
Thus, it can be appreciated that by employing a pair of end caps in keeping with the present invention, shock protection for individually packaged shock sensitive devices such as computer hard drives, CD or DVD drives, or the like, may be provided.
DESCRIPTION OF THE PRIOR ART
U.S. Pat. No. 2,874,826 issued to MATTHEWS et al. is directed to a shock and vibration isolation device which, however, is not intended for being incorporated in a rectilinear container. Rather, this device is a resilient and inflatable jacket comprising a plurality of chambers, made of a rubberized fabric which is adapted to hold a gas under pressure, and which will be wrapped around a shock sensitive device such as a guided missile so as to provide a shock and vibration isolation container therefor.
GOBAN U.S. Pat. No. 3,294,223 teaches a molded plastic corner piece having the configuration of a triangular polyhedron which is either rounded or flattened at its apex. The purpose of the corner support is to entrap air between the molded plastic corner piece and the corner of the carton into which it is placed.
U.S. Pat. No. 4,905,835 issued to PIVERT et al. teaches inflatable cushion packaging wherein a plurality of chambers are inflated so as to provide cushioning which will absorb shock and thereby protect a shock sensitive product located in the centre of the container. The amount to which the balloon-like chambers may be inflated, and therefore their hardness, may be controlled.
FOOS et al. U.S. Pat. No. 5,226,543 teaches a packaging structure which includes both a platform portion and a sidewall portion, wherein the sidewall portion forms an enclosure around the platform portion. Essentially, this product is an end cap or platform. The sidewall has both inner and outer walls which are joined by a bridge section, and the inboard wall is relatively shorter than the outboard wall such that the platform portion holds the fragile article at a specific distance above the lower edge of the outboard wall. Shock absorbing formations—typically, notches—are formed in the bridge portion of the sidewall. These notches have a degree of elasticity such that, when the packaging structure is loaded and then unloaded, or shocked and then unloaded, the notch will return to its original shape and can absorb multiple loads without deteriorating. However, in order for the elasticity to exist, a material with a high degree of stiffness must be used—typically, that material is high density polyethylene. The patent requires that the inboard wall is shorter than the outboard wall.
Another patent issued to Foos et al. is U.S. Pat. No. 5,385,232. Th
Ackun Jr. Jacob K.
Cahn & Samuels LLP
LandOfFree
Protective packaging device having multiple deflection elements does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Protective packaging device having multiple deflection elements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protective packaging device having multiple deflection elements will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3278497