Radiation imagery chemistry: process – composition – or product th – Thermographic process – Heat applied after imaging
Reexamination Certificate
2000-09-19
2001-08-28
Schilling, Richard L. (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Thermographic process
Heat applied after imaging
C430S432000, C430S448000, C430S493000, C430S523000, C430S531000, C430S536000, C430S961000
Reexamination Certificate
active
06280912
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to photographic elements having a protective overcoat that resists fingerprints, common stains, and spills. More particularly, the present invention provides a processing-solution-permeable protective overcoat for the photographic element that is water resistant in the final processed product. The overcoat, before formation of the image, comprises hydrophobic polymeric particles in a matrix of a hydrophilic biopolymer. Hydrolysis of the biopolymer by an enzyme allows the biopolymer to wash out of the overcoat during processing, so that coalescence of the hydrophobic particles in the overcoat can occur, resulting in the formation of a continuous water-resistant protective overcoat.
BACKGROUND OF THE INVENTION
Gelatin has been used extensively as a binder in a variety of imaging elements because of its many unique and advantageous properties. For example, its water swellability allows processing chemistry to be carried out to form silver halide-based photographic images. However, due to this same property, imaged elements containing gelatin, no matter if they are formed on transparent or reflective media, have to be handled with extreme care to avoid contact with any aqueous solutions that may damage the images. Accidental spillage of common household solutions such as coffee, punch, or even plain water can damage imaged elements such as photographic prints.
There have been attempts over the years to provide protective layers for gelatin-based photographic systems that will protect the images from damage by water or aqueous solutions. U.S. Pat. No. 2,173,480 describes a method of applying a colloidal suspension to moist film as the last step of photographic processing before drying. A number of patents describe methods of solvent coating a protective layer on the image after photographic processing is completed and are described, for example, in U.S. Pat. Nos. 2,259,009, 2,331,746, 2,798,004, 3,113,867, 3,190,197, 3,415,670 and 3,733,293. More recently, U.S. Pat. No. 5,376,434 describes a protective layer formed on a photographic print by coating and drying a latex on a gelatin-containing layer bearing an image. A drawback is that the photographic materials need to be coated after the processing step. Thus, the processing equipment needs to be modified and the personnel running the processing operation need to be trained to apply the protective coating.
Various lamination techniques are known and practiced in the trade. U.S. Pat. Nos. 3,397,980, 3,697,277 and 4,999,266 describe methods of laminating a polymeric sheet film, as a protective layer, on a processed image. However, protective coatings that need to be applied to the image after it is formed, several of which were mentioned above, add a significant cost to the final imaged product.
A number of patents have been directed to water-resistant protective coatings that can be applied to a photographic element prior to development. For example, U.S. Pat. No. 2,706,686 describes the formation of a lacquer finish for photographic emulsions, with the aim of providing water- and fingerprint-resistance by coating the light-sensitive layer, prior to exposure, with a porous layer that has a high degree of water permeability to the processing solutions. After processing, the lacquer layer is fused and coalesced into a continuous, impervious coating. The porous layer is achieved by coating a mixture of a lacquer and a solid removable extender (for example, ammonium carbonate), and removing the extender by sublimation or dissolution during processing. The overcoat as described is coated as a suspension in an organic solvent, and thus is not desirable for large-scale application.
More recently, U.S. Pat. No. 5,853,926 to Bohan, et al., discloses a protective coating for a photographic element, involving the application of an aqueous coating comprising polymer particles and a soft polymer latex binder. This coating allows for appropriate diffusion of photographic processing solutions, and does not require a coating operation after exposure and processing. The hydrophobic polymer particles must be fused to form a protective coating that is continuous and water-impermeable.
The ability to provide the desired property of post-process water/stain resistance of an imaged photographic element, at the point of manufacture of the photographic element, and in a way that involves minimal or no changes in the photofinishing operation, is a highly desired feature. However, in order to accomplish this feature, the desired photographic element must be permeable to aqueous solutions during the processing step, but become water impermeable or water resistant after the processing is completed. Commonly assigned U.S. Ser. No. 09/235,436 discloses the use of a processing-solution-permeable overcoat that is composed of a urethane-vinyl copolymer having acid functionalities. Commonly assigned U.S. Ser. No. 09/235,437 and U.S. Ser. No. 09/448,213 disclose the use of a second polymer such as a soluble gelatin or polyvinyl alcohol to improve permeability.
U.S. Pat. No. 5,856,051 describes the use of hydrophobic particles with gelatin as the binder in an overcoat formulation. This invention demonstrated an aqueous coatable, water-resistant protective overcoat that can be incorporated into the photographic product, allows for appropriate diffusion of photographic processing solutions, and does not require a coating operation after exposure and processing. The hydrophobic polymers exemplified in U.S. Pat. No. 5,856,051 include polyethylene having a melting temperature (Tm) of 55 to 200° C., and therefore capable of forming a water-resistant layer by fusing the layer at a temperature higher than the Tm of the polymer after the sample has been processed to generate the image. The coating solution is aqueous and can be incorporated in the manufacturing coating operation without any equipment modification. The fusing step is simple and environmentally friendly to photofinishing laboratories. Similarly, commonly assigned U.S. Ser. No. 09/353,939 (Docket 79581) and U.S. Ser. No. 09/548,514 (docket 80493), respectively, describe the use of a polystyrene-based material and a polyurethane-based material, with gelatin as the binder, in an overcoat for a photographic element, which overcoat can be fused into a water resistant overcoat after photographic processing is accomplished to generate an image. Like the polyethylene overcoats described above, the protective properties of this overcoat are compromised by the necessity to form a continuous film in the presence of gelatin in the layer. The type of polymers that can be used may not afford protective overcoats with the most desirable durability or scratch resistance. Further, the photofinishing operation must include a fusing step in order to achieve a protective layer.
Commonly assigned Ser. No. 09/547,374 (Docket 80610) and Ser. No. 09/591,430 (Docket 80962) describe the use of a proteolytic enzyme, either incorporated into one of the processing solutions or into the photographic element itself during manufacture, which enzyme allows the gelatin to be removed from a nascent protective layer during photoprocessing. The resulting overcoat becomes water resistant upon drying. These methods of forming a protective overcoat may suffer from the fact that the underlying imaging layers are also coated in gelatin. In practice, it is difficult to control the degree of hydrolysis using proteolytic enzymes so that only the gelatin in the overcoat layer is digested and none of the gelatin in the imaging layers is affected. When some or all of the imaging layers are digested by the enzyme, in addition to the overcoat, some or all of the image records in the imaging layers become soluble in the processing solutions and are washed off. In extreme cases, the imaging layers may be entirely dissolved, so that only the bare photographic support remains. In any case, the imaging capability of the element can potentially be degraded by the use of such enzymes.
Therefore, there remains a nee
Fornalik Jill E.
Jasek Amy
Whitesides Thomas H.
Yau Hwei-Ling
Eastman Kodak Company
Konkol Chris P.
Schilling Richard L.
LandOfFree
Protective overcoat for an imaging element comprising an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Protective overcoat for an imaging element comprising an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protective overcoat for an imaging element comprising an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2452186